

Review article

Therapeutic approaches for Duchenne muscular dystrophy

Thomas C. Roberts^{1,2,3} , Matthew J. A. Wood^{1,2,3} & Kay E. Davies^{1,3,4}

Abstract

Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disorder and a priority candidate for molecular and cellular therapeutics. Although rare, it is the most common inherited myopathy affecting children and so has been the focus of intense research activity. It is caused by mutations that disrupt production of the dystrophin protein, and a plethora of drug development approaches are under way that aim to restore dystrophin function, including exon skipping, stop codon readthrough, gene replacement, cell therapy and gene editing. These efforts have led to the clinical approval of four exon skipping antisense oligonucleotides, one stop codon readthrough drug and one gene therapy product, with other approvals likely soon. Here, we discuss the latest therapeutic strategies that are under development and being deployed to treat DMD. Lessons from these drug development programmes are likely to have a major impact on the DMD field, but also on molecular and cellular medicine more generally. Thus, DMD is a pioneer disease at the forefront of future drug discovery efforts, with these experimental treatments paving the way for therapies using similar mechanisms of action being developed for other genetic diseases.

Sections

Introduction

DMD genetics and pathophysiology

Dystrophin restoration strategies

Utrophin upregulation

Other therapeutic approaches

Combination therapy

Conclusions and perspectives

¹Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK. ²Department of Paediatrics, University of Oxford, Oxford, UK. ³MDUK Oxford Neuromuscular Centre, Oxford, UK. ⁴Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK. e-mail: thomas.roberts@idrm.ox.ac.uk; kay.davies@dpag.ox.ac.uk

Introduction

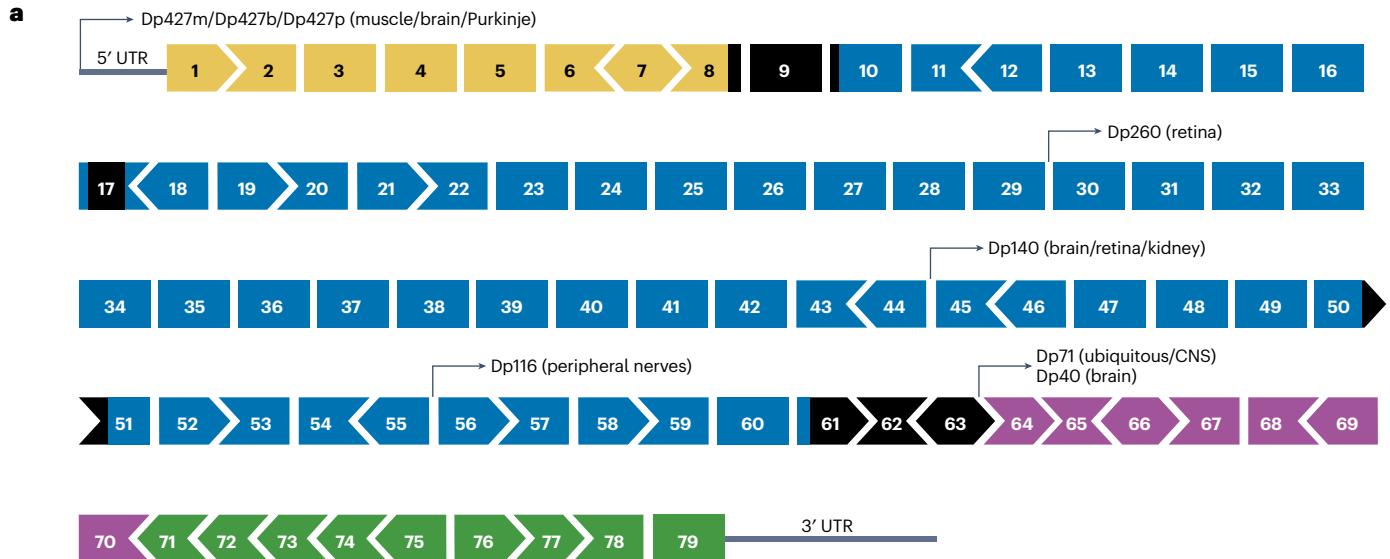
Duchenne muscular dystrophy (DMD) is a genetic muscle-wasting disease and the most common inherited paediatric myopathy, affecting 1 in 3,500–5,000 live male births¹. It is characterized by progressive muscle weakness and loss of ambulation around age 10 years, and is ultimately fatal owing to cardiorespiratory failure around age 30 years^{2–4}. In addition to muscle wasting, commonly observed clinical features of the disease include scoliosis, joint contractures and calf pseudohypertrophy⁵. DMD is caused by mutations that disrupt production of the dystrophin protein and therefore sensitize muscle to contraction-induced damage⁶.

Standard of care for patients with DMD is corticosteroid therapy (for example, prednisone or deflazacort), which has demonstrated some limited efficacy in terms of prolonging ambulation and delaying disease progression^{7,8} through an anti-inflammatory mechanism. Importantly, long-term steroid use is associated with undesirable side effects including Cushingoid symptoms, weight gain, growth delay, behavioural changes and osteoporosis⁹. The latter is particularly concerning because accidental fractures in patients with DMD often lead to a permanent loss of ambulation¹⁰. Efforts to develop corticosteroid treatments for DMD with improved side effect profiles (such as vamorolone)¹¹ have been discussed in detail elsewhere⁹.

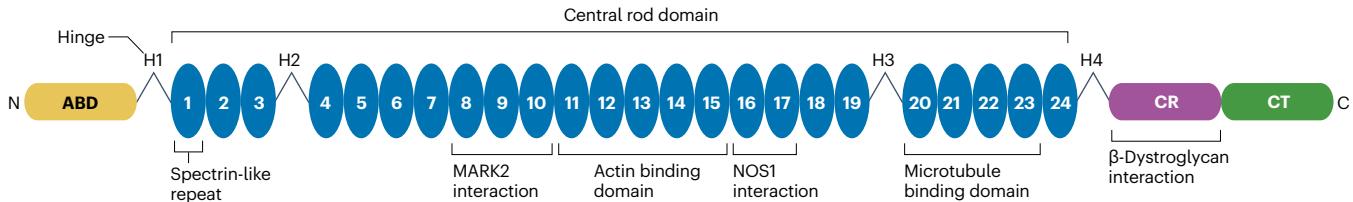
Newer DMD therapeutic approaches have focused on restoring dystrophin expression using multiple modalities. Drugs that restore the dystrophin reading frame via antisense oligonucleotide (ASO)-mediated exon skipping, stop codon readthrough and gene replacement have achieved regulatory approval for clinical use. Although these are major achievements for the DMD research and patient communities, the efficacy of these drugs is generally accepted to be very low. Various efforts are under way to enhance delivery of exon skipping drugs via novel chemical modifications and conjugation to delivery-assisting moieties. Conversely, multiple additional gene replacement therapies, comprised of viral vector-encoded compact dystrophin variants, are in late-stage clinical trials. Other therapeutic strategies, including cell therapy, gene editing, upregulation of compensatory genes such as utrophin and combination therapies, are also under investigation.

DMD is a key disease indication in the field of experimental therapeutics for several reasons: it constitutes an unmet clinical need with devastating disease progression; it has a relatively high incidence for a rare disease; a plethora of molecular and cellular medicines are being investigated for its treatment; and there have been multiple recent regulatory approvals. Advances in DMD therapeutics will undoubtedly have an impact on the development of therapeutics in other areas of medicine, as similar modalities can be applied to other disease indications. Here, we discuss the drug development landscape for DMD with a main focus on dystrophin restoration therapies, although other strategies are considered briefly. Recent drug approvals, progress in current clinical trials, improved delivery technologies, vector-associated safety issues, combination therapies and other novel approaches are discussed.

DMD genetics and pathophysiology


DMD is an X-linked recessive dystrophinopathy, caused by genetic absence of the dystrophin protein, which is encoded by the *DMD* gene at Xp21. Dystrophin is located at the intracellular surface of the sarcolemma, where it acts as an organizing centre for the dystrophin-associated protein complex (DAPC). Specifically, dystrophin binds to the transmembrane protein β -dystroglycan via its C-terminal cysteine-rich domain¹². β -Dystroglycan binds to

α -dystroglycan, which is exposed on the extracellular surface of the sarcolemma where it interacts with a complex of laminins. Dystrophin also binds to filamentous γ -actin, intermediate filaments and the microtubule network in the sarcoplasm via its N terminus. As such, it forms a mechanical link between the extracellular matrix and the actin cytoskeleton¹³. The primary function of dystrophin is to serve as a 'shock absorber' that protects muscle from contractile damage⁶. Additionally, it is involved in multiple signalling processes via DAPC interactions, including nitric oxide (NO) signalling via the activity of neuronal nitric oxide synthase (nNOS), the MAP kinase pathway¹⁴ and MARK2 kinase signalling, which regulates muscle satellite (stem) cell polarity¹⁵.


The loss of dystrophin results in disruption of the DAPC, and therefore many DAPC components become mislocalized from the sarcolemma¹² and are expressed at lower levels^{16,17}. For example, the sarcoglycans are downregulated and mislocalized in dystrophin-deficient muscle^{16,17}. Disruption of sarcoglycans is associated with various forms of limb-girdle muscular dystrophy¹⁸, indicating that integrity of the DAPC is important for preventing muscle pathology. Dystrophin loss also leads to increased Ca^{2+} influx, oxidative stress and myonecrosis. Dystrophic muscle is characterized by foci of degeneration and regeneration and by persistent inflammation. During the early stages of disease, myofibre loss is balanced by compensatory regeneration driven primarily by satellite cells. In advanced disease, muscle quality declines as a consequence of extensive fibrosis and deposition of adipose tissue¹⁹, which progressively replaces myofibres and generates a non-productive environment that is unable to support satellite cell-mediated regeneration (that is, functional exhaustion). Importantly, evidence suggests that the number of satellite cells is not reduced in dystrophic muscle and their regenerative potential is not diminished^{20,21}.

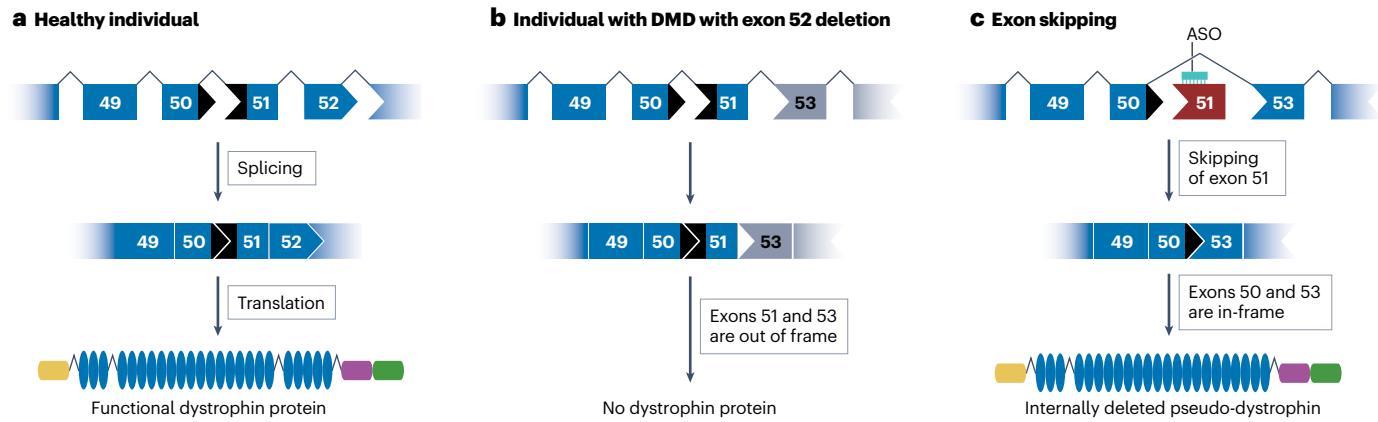
Aside from the structural and signalling functions described above, there is also evidence that dystrophin functions as a tumour suppressor in cancers that involve myogenic programmes (that is, rhabdomyosarcoma, gastrointestinal stromal tumour and leiomyosarcoma)²² and in other cancers such as neuroblastoma²³. Somatic mutations in the *DMD* gene are common in high-grade myogenic cancers²². Cell culture experiments demonstrated that dystrophin re-expression can reduce cell migration, invasion and anchorage independence in myogenic sarcomas, suggesting that loss of dystrophin expression promotes metastasis²².

The genomic locus encoding the *DMD* gene is one of the largest in the human genome (~2.2 Mb) and exhibits a high rate of de novo mutation. Common types of DMD-causing mutation include whole exon deletions (68%), exon duplications (11%) and nonsense mutations (10%)^{24–27}. Although mutations can occur throughout the genomic region, large deletions (and some duplications) are concentrated at two hot spots located at exons 3–19 and exons 45–55 (ref. 28). The *DMD* gene consists of 79 exons (Fig. 1a), many of which code for 24 spectrin-like repeat domains in the central rod domain of dystrophin. There is a degree of functional redundancy in these domains, meaning that in many cases they are dispensable for dystrophin function (Fig. 1b). Importantly, whole exon deletions that do not disrupt the translation reading frame lead to an internally deleted dystrophin protein, which retains partial functionality and is associated with Becker muscular dystrophy (BMD), a related dystrophinopathy^{29–32}. Patients with BMD present with a wide range of disease severities, although disease onset is typically later and pathology is relatively mild compared with DMD. Life expectancy is longer than for DMD, with dilated cardiomyopathy typically appearing in the fourth decade of life^{33,34}. However, in some

b Muscle dystrophin isoform (Dp427m)

Fig. 1 | The dystrophin gene and protein. **a**, Schematic of the *DMD* gene. The colour of each exon represents the protein domain it encodes: the actin binding domain (ABD) in orange, the hinge regions in black, the central rod domain in blue, the cysteine-rich region (CR) in purple and the C-terminal domain (CT) in green. Exon shapes indicate how the triplet base code is distributed across the exons, such that they fit together to generate an in-frame mature *DMD* transcript.

The locations of the transcription start sites for the various dystrophin protein isoforms are indicated by arrows. **b**, Structure of the full-length muscle isoform of dystrophin (Dp427m). Key interactions between dystrophin and other binding partners are indicated. CNS, central nervous system; UTR, untranslated region. Adapted from ref. 5, Springer Nature Limited.


cases dilated cardiomyopathy can be the initial presentation of BMD in younger patients³⁵. Patients with BMD generate dystrophin protein at lower levels than in the case of DMD and/or produce a partially functional dystrophin on account of varying degrees of internal in-frame deletion³¹. In rare cases, some patients with BMD with large internal dystrophin deletions are effectively asymptomatic^{29,30}. These observations motivated the development of therapeutic dystrophin restoration strategies that aim to convert the severe DMD phenotype into the milder BMD situation³⁶.

Dystrophin restoration strategies

Loss of dystrophin is the primary genetic cause of DMD, and so extensive research effort has been directed towards therapies that can restore dystrophin expression. A plethora of approaches have been tested, including splice correction (exon skipping) to restore the translation reading frame, stop codon readthrough for patients with nonsense mutations, gene replacement with internally deleted dystrophin transgenes, delivery of dystrophin-expressing myogenic cells and gene editing to repair the *DMD* locus at the DNA level.

Exon skipping

The leading dystrophin restoration strategy is currently exon skipping, whereby modulation of splicing is used to restore the translation reading frame and promote the generation of a partially functional, internally deleted pseudo-dystrophin protein (Fig. 2). Typically, this is achieved using steric block ASOs. These short (~20–30 nucleotide), single-stranded nucleic acid polymers interact with pre-mRNA transcripts via Watson–Crick base pairing and thereby influence splicing decisions by physically masking specific splicing signals, which include exon splicing enhancers and exon recognition sequences. Exon skipping ASOs must each be designed to target a single specific exon, and so an individual drug can only ever be capable of treating the limited number of patients for which a given exon skip will restore the translation reading frame. Importantly, many DMD-causing mutations cannot be treated with exon skipping approaches owing to certain regions of the dystrophin protein (and their encoding exons) being indispensable for function, or the absence of suitable mutation-adjacent exons that can be skipped in order to reframe the transcript. It has been estimated that exon skipping approaches might be applicable to 55% of DMD-causing

Fig. 2 | Restoration of dystrophin expression by exon skipping. **a**, In a healthy individual, the *DMD* gene undergoes splicing to excise intronic regions from the mature *DMD* mRNA transcript. A functional dystrophin protein is generated via the translation of this transcript. The schematic shows a region of the *DMD* gene covering exons 48–53, which encodes spectrin-like repeat domains (blue) and a hinge region (H3, in black). **b**, In individuals with DMD, mutations (often whole exon deletions) disrupt the translation reading frame of the *DMD* transcript. Here, a relatively common DMD-causing mutation is shown, in which exon 52

is deleted. As a result, exons 51 and 53 are out of frame, leading to a failure to generate dystrophin protein. Out-of-frame exons are shown in grey. **c**, Treatment with an antisense oligonucleotide (ASO) targeting an exon splicing enhancer motif in *DMD* exon 51 induces skipping of this exon by effectively hiding it from the spliceosome. As a result, exon 50 and exon 53 are spliced together, resulting in restoration of the dystrophin translation reading frame. Following translation, an internally truncated pseudo-dystrophin lacking the H3 domain is generated that retains a degree of functionality.

mutations and 80% of DMD-causing deletions²⁴. These approaches have primarily been used for patients who carry whole exon deletions but can also be used for nonsense mutations, provided that these mutations occur within exons that can be skipped without disrupting the translation reading frame. For example, the commonly used *mdx* mouse model of DMD carries a premature termination codon in *Dmd* exon 23, and restoration of dystrophin expression can be achieved by skipping the mutation-containing exon. Exon skipping approaches can also be applied to some types of exon duplication, such as duplication of *DMD* exon 2, discussed below.

Initial efforts focused on skipping of exon 51, which would be applicable to ~13% of all patients with DMD³⁶ (such as those with whole exon deletions of *DMD* exon 50 or 52). The great promise of oligonucleotide therapeutics is that upon establishing platform chemistries and delivery strategies, novel drugs can be rapidly generated by the careful alteration of the constituent nucleotide sequence to target a different transcript. In the case of DMD, modification of ASO sequences can be deployed to target a wider range of DMD-causing mutations. So far, there are four US Food and Drug Administration (FDA)-approved ASO drugs designed to skip various DMD exons (Table 1 and Fig. 3a). These ASOs are all phosphorodiamidate morpholino oligonucleotides (PMOs) (Fig. 3b) developed by Sarepta Therapeutics (eteplirsen³⁷, golodirsen³⁸ and casimersen³⁹) or NS Pharma (viltolarsen^{40–42}). They target the exons that have the potential to treat the largest number of patients – that is, exons 45, 51 and 53. Both Sarepta and NS Pharma have pipelines with ASOs that target the skipping of additional exons (43, 44, 50, 52 and 55), although many of these programmes are still at the preclinical stage. Importantly, not all DMD-causing mutations are treatable with exon skipping approaches³⁶. As the FDA has not approved exon skipping as a class of drug but has instead required separate trials for each ASO, the targeting of rare mutations is unlikely to be sufficiently commercially attractive for development by the pharmaceutical industry.

Notably, the European Medicines Agency has declined to approve any of the exon skipping compounds described above⁴³,

based primarily on their low efficacy, marginal therapeutic benefit and small trial sample sizes. Indeed, the approval of eteplirsen by the FDA was particularly controversial, leading to accusations of ‘railroading at the FDA’ and the resignations of several FDA review team members^{44–48}. Mean dystrophin protein expression after 180 weeks of eteplirsen treatment was determined to be less than 1% of healthy dystrophin levels⁴⁹. The efficacies of viltolarsen, golodirsen and casimersen are similarly modest^{39,40,50}. Nevertheless, PMOs have been remarkably safe in clinical trials^{51,52}, and doses of up to 3 g kg^{−1} are well tolerated in mice⁵³. Despite the low levels of dystrophin protein restored by these compounds, clinical trial participants treated with eteplirsen (the most studied exon skipping drug for DMD) have maintained an attenuation in ambulatory decline over a treatment period of at least 4 years⁵⁴, which is not consistent with the established progression of the disease.

Importantly, the four FDA approvals of PMO exon skipping drugs have not discouraged other companies from entering this space with enhanced chemistries and/or delivery technologies. The low efficacy of ‘naked’ PMO exon skipping drugs has motivated the development of improved delivery strategies, primarily based on bioconjugation⁵⁵. The backbone linkages of PMOs are uncharged (unlike most oligonucleotide therapeutics), which permits facile covalent conjugation to cell-penetrating peptides (CPPs). These are typically arginine-containing short peptides that facilitate interaction with the outer surface of the plasma membrane and glycocalyx, and which might to some extent promote endosomal escape. The resulting peptide–PMO (PPMO) conjugates offer major increases in potency in preclinical DMD models compared with unconjugated, naked PMO^{56,57}. PPMO conjugates are currently under investigation in two clinical programmes (Table 1). First, Sarepta is conducting a phase II trial (NCT04004065, MOMENTUM) of vesleteplirsen (SRP-5051), which consists of the exon 51-targeting eteplirsen PMO sequence conjugated to the arginine-rich R₆Gly peptide (Fig. 3c). Preliminary unpublished data reported by Sarepta suggest that vesleteplirsen exhibits greater

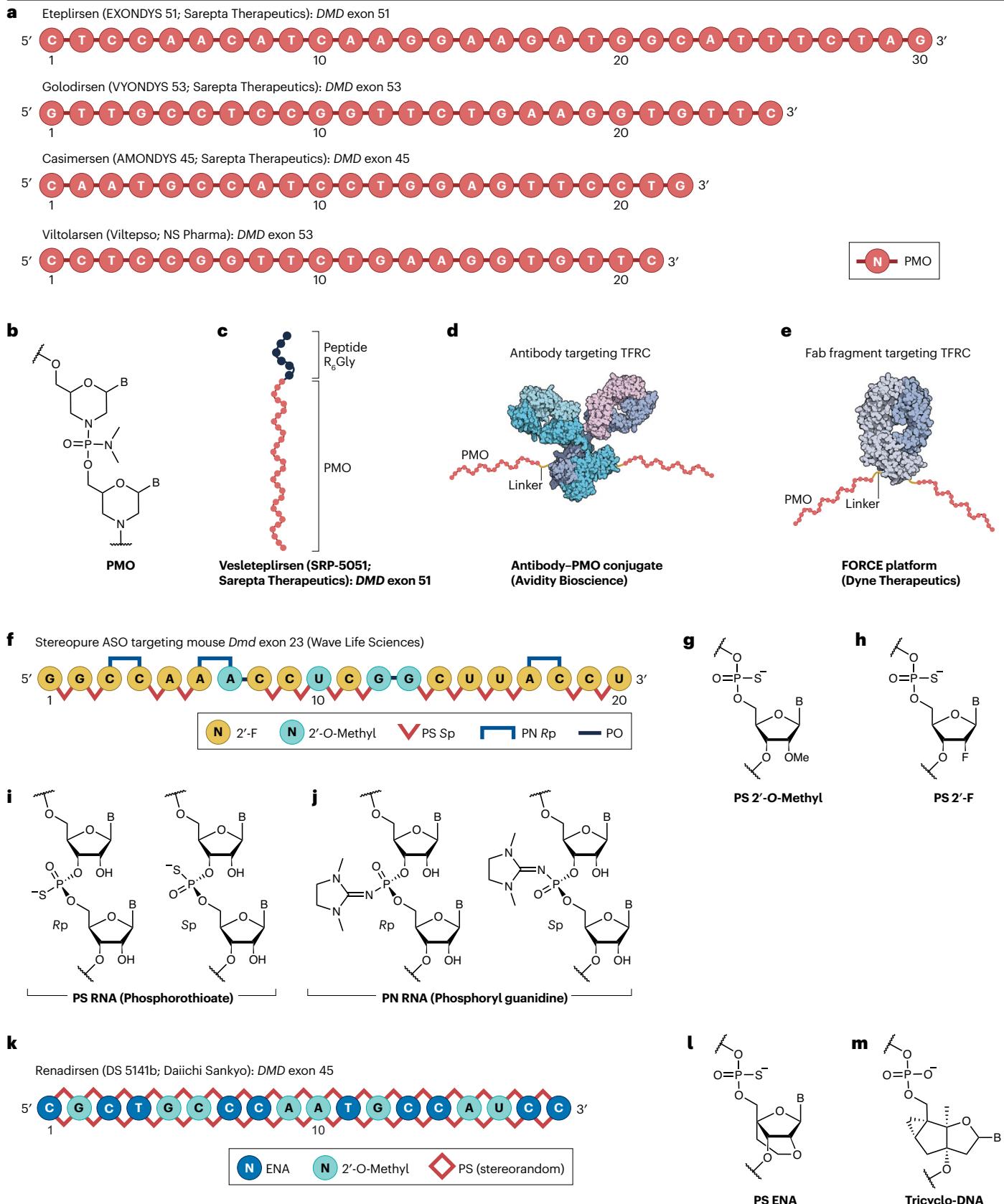
drug exposure and exon skipping activity than eteplirsen at equivalent doses (>10% mean exon skipping, >6% dystrophin expression after treatment with 30 mg kg⁻¹ per month for 3 months)⁵⁸. Secondly, PepGen has conducted a phase I clinical trial of PGN-EDO51 in healthy volunteers in Canada, based on novel PPMO technology developed by the Wood and Gait groups. These conjugates were designed to balance exon skipping activity with renal toxicity, which has been reported to be a potential limitation of PPMO technologies^{59,60}. PepGen reported that PGN-EDO51 was safe and well-tolerated in healthy volunteers, with dystrophin exon skipping observed at low levels (2% mean exon skipping, assayed 28 days after injection), which was expected considering the relatively low dose (a single intravenous 15 mg kg⁻¹ dose)⁶¹. Both companies reported cases of hypomagnesaemia after PPMO treatment, which required magnesium supplementation in some cases.

Entrada Therapeutics is developing PPMO exon skipping conjugates based on cyclic peptides using an enhanced endosomal escape vehicle (EEV) technology and is currently at the preclinical stage⁶².

Other ASO conjugation approaches are also under investigation. Avidity Biosciences is exploring an antibody–oligonucleotide conjugate approach (Fig. 3d), with the leading compound AOC 1044, targeting *DMD* exon 44 skipping, being investigated in the EXPLORE44 phase I/II clinical trial in healthy volunteers⁶³. AOC 1044 consists of PMO molecules conjugated to an antibody targeting the transferrin receptor (TFRC, TfR1), which is highly expressed in skeletal and cardiac muscle. Similarly, Dyne Therapeutics is undertaking a first-in-human phase I/II clinical trial of DYNE-251, targeting skipping of *DMD* exon 51 in amenable patients with DMD (NCT05524883). DYNE-251 consists of PMO molecules conjugated to a Fab fragment (Fig. 3e) also targeting TFRC. Dyne recently published preclinical exon skipping data in the *mdx* mouse using its FORCE platform⁶⁴.

The prospect of multi-exon skipping using a cocktail of ten octa-guanidine dendrimer-conjugated PMOs (vivo-morpholinos) has been explored in a DMD mouse model lacking *Dmd* exon 52 (the *mdx52* mouse)⁶⁵. Skipping of ten ‘hot-spot’ exons (*Dmd* exons 45–55) resulted in restoration of dystrophin expression and improvements in muscle function, although several skipped products were produced⁶⁵. Importantly, skipping of these hot-spot exons would theoretically

be applicable to ~63% of all patients with DMD⁶⁶. Whether such an approach can be translated for use in human patients remains to be demonstrated, as overall such multi-exon skipping strategies have thus far proved only minimally successful.


Wave Life Sciences recently initiated testing of an ASO designed to skip *DMD* exon 53 (WVE-N531) in a phase Ib/II clinical trial in 15 boys with DMD (NCT04906460). According to news reports, preliminary results from this trial after 6 weeks of treatment indicated substantial RNA level exon skipping, although dystrophin protein was below the lower limit of quantification⁶⁷. WVE-N531 is a chimeric stereopure steric block ASO that contains phosphorothioate (PS) and phosphoryl guanidine (PN) linkages, which reduce the overall charge of the oligonucleotide⁶⁸ (Fig. 3f–j). This drug also includes stereospecific linkages at one or more backbone linkages (both PS and PN linkages are chiral, unlike the analogous phosphodiester, PO, linkage) (Fig. 3i,j). Control of backbone linkage stereochemistry can influence a multitude of oligonucleotide properties, including hydrophobicity, nuclease resistance, target binding affinity and splice-switching activity⁶⁹. The notion that control of stereochemistry could be used to optimize ASO development is appealing, as ASOs with chiral centres in their backbone (which is the vast majority) in reality constitute racemic mixtures of hundreds of thousands of different molecules. Among this population there might be hyperfunctional molecules that could be synthesized in a stereopure manner, thereby offering a substantial increase in potency. However, the importance of stereopure ASO backbone linkages has also met with scepticism from some others in the oligonucleotide field⁷⁰. Beneficial outcomes that are obtained in certain properties (such as target binding) might be counteracted by detrimental changes in other properties (such as uptake efficiency). Notably, Wave Life Sciences has had several failures of its stereopure ASO technologies for both its DMD and its Huntington disease programmes^{71,72}. Demonstration of efficacy for WVE-N531 will be important to support the continuation of stereopure ASO technology development.

Daiichi Sankyo is investigating renadirsen (DS-5141b) in a phase II trial in eight participants (NCT04433234). Renadirsen is a ‘mixmer’ ASO consisting of 2'-O-Methyl and ethylene-bridged nucleic acid (ENA) residues with PS linkages (Fig. 3g,k,l) designed to skip *DMD* exon 45 (ref. 73).

Table 1 | Exon skipping drugs approved and in clinical development

Name	Company	Chemistry	Target exon	Approval or clinical stage
Eteplirsen	Sarepta Therapeutics	PMO	51	FDA
Viltolarsen	NS Pharma	PMO	53	FDA, Japan
Golodirsen	Sarepta Therapeutics	PMO	53	FDA
Casimersen	Sarepta Therapeutics	PMO	45	FDA
Vesleteplirsen	Sarepta Therapeutics	PPMO (R ₆ Gly)	51	Phase II
WVE-N531	Wave Life Sciences	PS/PN stereoselective	53	Phase Ib/II
Renadirsen	Daiichi Sankyo	2'OMe/ENA mixmer	45	Phase II
AOC 1044	Avidity Biosciences	PMO–antibody conjugate	44	Phase I/II
DYNE-251	Dyne Therapeutics	PMO–Fab fragment conjugate	51	Phase I/II
ENTR-601-44	Entrada Therapeutics	PPMO (EEV)	44	Preclinical
PGN-EDO51	PepGen	PPMO (EDO)	51	Phase I
SQY51	SQY Therapeutics	Tricyclo-DNA	51	Phase I/II (in 2023)

EDO, enhanced delivery oligonucleotide; EEV, enhanced endosomal escape vehicle; ENA, ethylene-bridged nucleic acid; PMO, phosphorodiamidate morpholino oligonucleotide; PPMO, peptide–PMO conjugate; PS/PN, phosphorothioate and phosphoryl guanidine linkages.

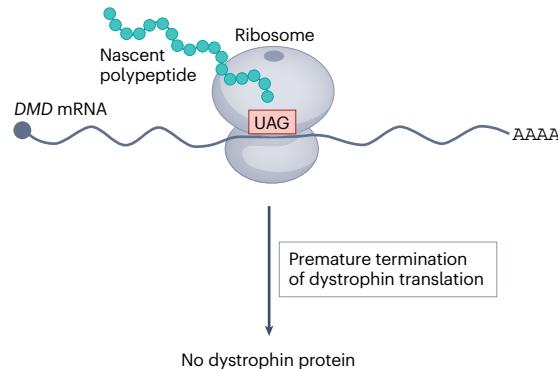
Fig. 3 | Antisense oligonucleotide therapies for Duchenne muscular dystrophy. **a**, Chemical composition of the FDA-approved exon skipping phosphorodiamidate morpholino oligonucleotide (PMO) compounds eteplirsen, golodirsen, casimersen and viltolarsen. **b**, Chemical structure of PMO chemistry. **c**, The peptide–PMO (PPMO) conjugate veteplirsen. **d**, An antibody–PMO conjugate developed by Avidity Biosciences, with a PMO molecule conjugated to an antibody targeting the transferrin receptor TFRC. **e**, A Fab fragment–PMO conjugate developed by Dyne Therapeutics, with a PMO conjugated to a Fab targeting TFRC. **f**, Chemical composition of a stereopure

antisense oligonucleotide (ASO) targeting mouse *Dmd* exon 23 (Wave Life Sciences). This compound also includes phosphodiester (PO) linkages and is chemically similar to WVE-N531 (exact composition not publicly disclosed). **g**, Phosphorothioate 2'-O-methyl RNA (PS 2'-O-Methyl). **h**, Phosphorothioate 2'-fluoro RNA (PS 2'-F). **i**, Rp and Sp stereoisomers of PS linkages. **j**, Rp and Sp stereoisomers of phosphoryl guanidine (PN) linkages. **k**, Chemical composition of renadirsen. **l**, Phosphorothioate 2'-O,4'-C-ethylene-bridged nucleic acid (PS ENA). **m**, Tricyclo-DNA. The IgG (IIGY) and Fab fragment (5FUZ) structures were downloaded from the Protein Data Bank.

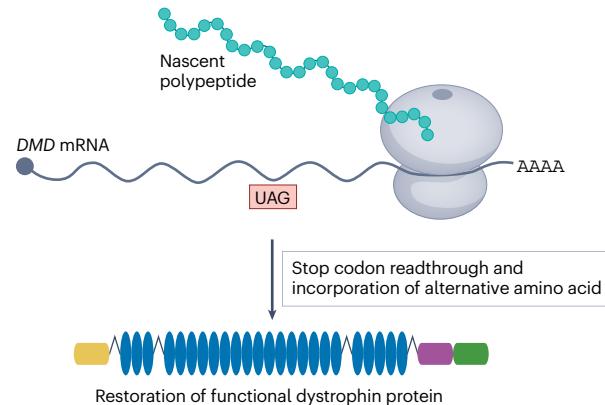
Also, SQY Therapeutics is developing tricyclo-DNA (Fig. 3m), an ASO chemistry that exhibits limited activity for dystrophin restoration in the brain^{74,75}, and it has initiated a phase I/II clinical trial (Avance 1) that is expected to be completed in mid-2024.

An alternative strategy is to use expressed exon skipping triggers based on the U1 or U7 small nuclear RNAs (snRNAs), which can be delivered via adeno-associated virus (AAV) vectors to enable systemic delivery throughout the musculature^{76,77}. Such an approach is currently under investigation in a phase I/II clinical trial (NCT04240314) sponsored by Nationwide Children's Hospital, USA, that aims to induce exon skipping of a duplicated *DMD* exon 2, the most commonly observed *DMD*-causing exon duplication²⁵. The experimental therapeutic in this case (scAAV9.U7-ACCA) is a self-complementary AAV9 encoding four U7 snRNA exon skipping transgene cassettes, two targeting the exon 2 splice acceptor and two the splice donor⁷⁸. This approach is notable because exon skipping results in two possible beneficial splicing outcomes. In the first outcome, skipping of one copy of *DMD* exon 2 will generate full-length dystrophin and be a significant advantage over other approaches that restore internally deleted pseudo-dystrophins. In the second outcome, skipping of both copies of *DMD* exon 2 will result in cap-independent translation driven by an internal ribosome entry site (IRES) sequence located in exon 5, which generates a highly functional N-terminally truncated dystrophin isoform⁷⁹. Evidence from preclinical studies suggests that the second splicing outcome is dominant⁷⁸. Preliminary unpublished findings from investigations in three patients with DMD are promising⁸⁰.

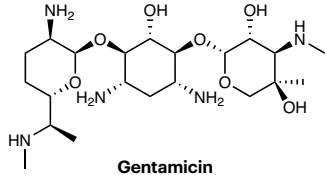
Stop codon readthrough


Nonsense mutations in the *DMD* gene result in the generation of truncated protein products and/or promote reductions in mRNA levels via the nonsense-mediated decay (NMD) pathway. Stop codon readthrough therapies have therefore been developed that aim to promote ribosome misreading of premature termination codons (PTCs) such that an alternative amino acid is incorporated and translation of the mRNA continues past the PTC instead of translation termination occurring. Stop codon readthrough approaches in the context of DMD are therefore expected to generate full-length dystrophin protein, albeit with a single internal amino acid change (Fig. 4a,b). Importantly, such stop codon readthrough therapies are suitable for the treatment of patients with single nonsense mutations (but not for patients in which a frameshift mutation generates PTCs downstream of the mutation). Early work focused on the use of gentamicin (Fig. 4c), an aminoglycoside antibiotic that binds in the aminoacyl-tRNA acceptor (A) site of the ribosome and interferes with codon–anticodon recognition. Gentamicin treatment showed some promise in preclinical studies⁸¹, although results in clinical trials were less impressive^{82–84}. Notably, aminoglycosides are associated with renal and otic toxicities⁸⁵, and clinical development of gentamicin was ultimately terminated.

PTC Therapeutics has developed an improved stop codon readthrough compound, ataluren (PTC124; Translarna). Ataluren is an orally bioavailable small molecule (3,5-diaryl oxadiazole, Fig. 4d) that has no structural similarity to aminoglycoside antibiotics, exhibits no antibiotic activity, does not influence NMD target expression and promotes readthrough of PTCs while not affecting normal termination codons⁸⁶. In July 2014 ataluren was granted conditional approval by the EMA⁸⁷ and is currently approved for use in patients with nonsense mutation DMD age 2 years and older at a dose of 40 mg kg⁻¹ daily. This approval was initially based on promising findings from a randomized, double-blind, placebo-controlled clinical trial (NCT00592553)⁸⁸, and was conditional on the findings of a second phase III trial (NCT01826487, ACTDMD)⁸⁹. Neither of these trials met their primary end point of a statistically significant improvement in 6 min walk distance (6MWD) by more than 30 m at week 48 post treatment (relative to placebo-treated individuals). However, analysing a subset of the data revealed significant improvements in patients in the ambulation transition phase (that is, those with baseline 6MWD of 300–400 m)⁸⁹. Importantly, the FDA declined to approve ataluren based on the same data⁹⁰. Subsequent studies have provided further evidence to support the efficacy of ataluren. A meta-analysis in which data from these similar trials was combined found that the improvement in 6MWD on ataluren did reach statistical significance (for both all intention-to-treat patients and the ambulation transition patient subset)⁹¹. Nevertheless, controversy surrounding the approval of ataluren persists and several clinical trials are ongoing (phase II, NCT04336826 and phase III, NCT02369731, NCT01247207, NCT03179631). The mechanism of action for ataluren is currently unknown, and it was shown that this drug could bind to and stabilize firefly luciferase, leading to an increase in its activity in reporter assays similar to those used to identify it as a stop codon readthrough candidate⁹². Others have reported conflicting results using ataluren, such as a failure to show readthrough activity using multiple reporter assays⁹³. A convincing demonstration of dystrophin restoration in ataluren-treated patient muscle biopsy samples and elucidation of the drug mechanism of stop codon readthrough will help to assuage these concerns.


Gene replacement therapy

Classical gene therapy for DMD aims to introduce DNA that encodes a functional dystrophin protein into patient muscles. Transgene DNA is typically delivered using viral vectors, with AAV being the vector of choice. Treatment with viral gene therapy usually results in 'immunization' of the treated individual against the vector, meaning that repeat administration of the therapy is precluded⁹⁴. AAV is a single-stranded DNA parvovirus that is generally considered to be non-pathogenic in humans and has been widely used for gene therapy applications, with two AAV-based gene therapy products reaching marketing approval for non-DMD indications. These products are intrathecal injection of


a Individual with DMD with premature termination codon

b Stop codon readthrough therapy

c

d

Fig. 4 | Restoration of dystrophin by stop codon readthrough therapy. **a**, Nonsense mutations that introduce premature stop codons in the *DMD* mRNA result in premature termination of translation by the ribosome and a failure to generate full-length, functional dystrophin protein. **b**, Treatment with a stop codon readthrough drug (such as ataluren) results in the incorporation

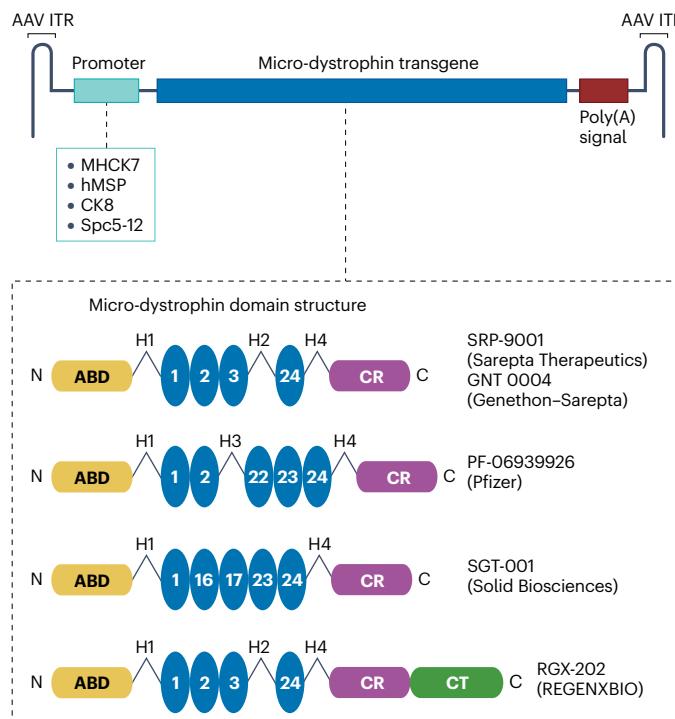
of a random alternative amino acid at the premature termination codon site. The ribosome can therefore proceed through the premature stop codon and expression of full-length dystrophin protein is restored. **c**, Chemical structure of gentamicin. **d**, Chemical structure of ataluren.

zolgensma for the treatment of spinal muscular atrophy (SMA) and subretinal injection of luxturna for treating Leber congenital amaurosis. Importantly, multiple AAV serotypes exhibit tropism for skeletal and cardiac muscle^{95–97}. However, the AAV genome has a maximum packaging capacity of ~4.8 kb and so cannot deliver the full-length *DMD* cDNA in a single vector given that the major muscle isoform is ~14 kb. Efforts have therefore focused on the generation of dystrophin minigenes in which non-essential internal domains are deleted, which are inspired by the example of a very mildly affected patient who expressed an internally truncated but functional pseudo-dystrophin protein²⁹ (Fig. 5). Expression of this minigene, with 46% of the normal dystrophin protein-coding region, prevented pathology in the *mdx* mouse, and the deletion was further extended to generate micro-dystrophin genes⁹⁸. As such, gene replacement therapies for DMD have focused on the delivery of various micro-dystrophin transgenes (also named ‘mini-dystrophin’). Micro-dystrophins typically lack large portions of the central rod domain – and therefore most of the spectrin-like repeat domains are also missing – but interactions between the DAPC and the cytoskeleton are maintained, thereby preserving the primary function of dystrophin. Most micro-dystrophin constructs lack the C-terminal domain, the inclusion of which confers little additional therapeutic benefit⁹⁹. There are currently five micro-dystrophin drugs in clinical trials, sponsored by Sarepta, Pfizer, Solid Biosciences, Genethon (in partnership with Sarepta) and REGENXBIO. These constructs differ in terms of the micro-dystrophin structure, the choice of promoter and the AAV serotype used (Table 2). AAV-mediated delivery of micro-dystrophin can improve dystrophic pathology in various mouse

and canine DMD models^{100–103}, suggesting that micro-dystrophin genes might be sufficient to convert the DMD phenotype into a milder Becker clinical course.

SRP-9001(rAAVrh74.MHCK7.micro-dystrophin, ELEVIDYS, delan-distrogene moxeparvovec; Sarepta) is the AAV-micro-dystrophin gene therapy that is at the most advanced stage and for which the most information is publicly available. It uses a codon-optimized human micro-dystrophin minigene driven by a synthetic MHCK7 promoter, consisting of the muscle creatine kinase (MCK) promoter fused with the MCK and α -myosin heavy chain complex (α MHC) enhancers to promote high expression levels specifically in skeletal and cardiac muscle¹⁰⁴. This transgene cassette is delivered using an AAV variant derived from rhesus macaques (AAVrh74), which exhibits strong skeletal and cardiac muscle tropism¹⁰⁵, and for which seroprevalence of neutralizing antibodies is low in patients with DMD¹⁰⁶. A phase I/IIa clinical trial (NCT03375164) in four patients with DMD treated with 2×10^{14} vector genomes (vg) kg^{-1} of SRP-9001 reported expression of dystrophin 12 weeks after injection and improved North Star Ambulatory Assessment (NSAA) scores and serum CK levels up to 1 year after treatment¹⁰⁷. Three of these treated patients underwent further analysis by quantitative MRI and spectroscopy, which illustrated an improvement in muscle fat fraction and transverse relaxation time (qT_2 , which is affected by inflammation and fat infiltration) values for patients treated with SRP-9001, compared with a natural history cohort¹⁰⁸. (Comparison of experimental DMD therapies with natural history data has been commonly employed when the use of a placebo group is precluded by the relatively small number of available patients.) Multiple further

clinical trials of SRP-9001 are ongoing (phase I open-label extension, NCT03375164; phase II randomized placebo controlled, NCT03769116; phase I, NCT04626674; and phase III double-blind, randomized, placebo controlled, NCT05096221), with some preliminary data available through press releases and conference presentations^{109–111}. On the basis of the promising findings from across its clinical programmes, Sarepta submitted a Biologic Licence Application for SRP-9001 to the FDA, which was granted Priority Review status¹¹². In June 2023, SR-9001 was granted conditional approval for use in boys aged 4–5 years with DMD who do not have deletions in exon 8 and/or 9, making this the first approved gene therapy product for DMD¹¹³.


Unfortunately, other micro-dystrophin gene therapy development programmes have not run so smoothly. In December 2021, Pfizer announced the death of a 16-year-old non-ambulatory trial participant with advanced disease treated with a high dose (2×10^{14} vg kg⁻¹) of PF-06939926 in an open-label phase Ib trial (NCT03362502), leading to a temporary FDA hold on the drug^{114,115}. A randomized, double-blind, placebo-controlled phase III trial of PF-06939926 (NCT04281485, CIFREO) is ongoing. No peer reviewed findings from these studies are currently available, but claims of relatively high levels of micro-dystrophin expression (24–50%, by anti-peptide antibody-enriched, immunoaffinity liquid chromatography tandem mass spectrometry assay) and significant functional improvement in the phase Ib trial have been reported by Pfizer¹¹⁶. However, several treatment-related serious adverse events have been reported, related to muscle weakness and myocarditis, leading to a protocol amendment to exclude patients with mutations that affect *DMD* exons 9–13, or deletions that affect both exons 29 and 30, and to include a 7-day hospitalization period after treatment administration^{117,118}. A collaborative working group that combined the data and experience from Pfizer, Sarepta, Solid Biosciences and Genethon, together with experts from academia, was established to address the potential safety issues with micro-dystrophin gene therapy¹¹⁹. The observation that the worst serious adverse events occurred only in patients who carried deletions of dystrophin-encoding regions that are present in the micro-dystrophin transgene protein, suggested that a T cell-mediated immune response is responsible¹¹⁹ and provides a scientific rationale for excluding such patients from clinical trials.

Similarly, a phase I/II trial (NCT03368742, IGNITE) of the micro-dystrophin therapeutic SGT-001 (Solid Biosciences) has been placed on hold by the FDA twice, as a consequence of serious adverse events in a patient in the high-dose (2×10^{14} vg kg⁻¹) cohort, including thrombocytopenia, complement activation, reduced red blood cell count, acute kidney injury and cardiopulmonary insufficiency¹²⁰. Clearance to continue was given after several protocol amendments, including improvements to the AAV manufacturing process to remove the majority of empty viral capsids. Prophylactic measures to minimize immune reactions were also implemented (treatment with eculizumab and a C1 esterase inhibitor), together with an increase in corticosteroid dose in the first month after SGT-001 injection¹²¹. No peer reviewed data on the safety and efficacy of SGT-001 are currently available, but dystrophin levels of up to 17.5% (by western blot) of healthy levels and improvements in 6MWD, NSAA score and pulmonary function tests have been reported by Solid Biosciences¹²². An improved DMD micro-dystrophin gene therapy product (SGT-003) with better tropism for muscle and heart and reduced liver delivery is being developed by Solid Biosciences and is currently at the investigational new drug stage.

Notably, there have been several other deaths following treatment with high-dose AAV in clinical trials for X-linked myotubular myopathy (NCT03199469)¹²³, Sanfilippo syndrome (NCT03612869)¹²⁴

and in two patients treated with zolgensma (an FDA-approved gene therapy for SMA)¹²⁵. High-dose AAV9 therapies (2×10^{14} vg kg⁻¹) have also been reported to induce severe hepatic and neurological toxicities in nonhuman primates and piglets¹²⁶. However, even higher doses of AAV-micro-dystrophin gene therapies have been administered to patients with DMD (SGT-001 at 2×10^{14} vg kg⁻¹ and PF-06939926 at 3×10^{14} vg kg⁻¹)^{116,127}, suggesting that some patients are more susceptible to severe toxic effects than others. It is clear that a re-evaluation of the safety of high-dose AAV therapies is warranted.

Aside from safety issues associated with high-dose AAV, gene replacement therapy for DMD faces several additional challenges. Indeed, as many as ~40% of humans are already positive for anti-AAV antibodies as a consequence of natural exposure¹²⁸, which creates a key challenge for the application of AAV-derived vectors in patients with DMD. The presence of these antibodies is typically an exclusion criterion in gene therapy trials. The expression of micro-dystrophin in the muscle of patients with DMD has the potential to generate non-self antigens, leading to an anti-transgene immune response. The relative failure of the first clinical trial of AAV-micro-dystrophin was attributed to such an anti-dystrophin T cell response¹²⁹. Evidence from preclinical studies suggests that the anti-dystrophin antibody response can be avoided by co-treating with immunomodulatory drugs such as rituximab and VBP6 (ref. 130). The success of AAV-micro-dystrophin therapy is predicated on long-term expression of the therapeutic

Fig. 5 | Micro-dystrophin gene replacement therapy. Micro-dystrophin transgenes expressed in adeno-associated virus (AAV) genomes. The constructs contain flanking inverted terminal repeat (ITR) regions, a muscle-specific promoter (one of the four variants shown), the micro-dystrophin transgene and a poly(A) transcription termination signal. Micro-dystrophin domain structures are indicated for all the micro-dystrophin gene therapy products currently in clinical development or FDA approved. ABD, actin binding domain; CR, cysteine-rich domain; CT, C-terminal domain.

Table 2 | Micro-dystrophin gene replacement therapies in clinical development

Name	Company	Micro-dystrophin	AAV serotype	Promoter	Approval or clinical stage
SRP-9001	Sarepta Therapeutics	ΔR4-23/ΔCT	AAVrh74	MHCK7	FDA
PF-06939926	Pfizer	ΔR3-19/20-21/ΔCT	AAV9	hMSP	Phase III
SGT-001	Solid Biosciences	ΔR2-15/R18-22/ΔCT	AAV9	CK8	Phase I/II
GNT 0004	Genethon–Sarepta	ΔR4-23/ΔCT	AAV8	Spc5-12	Phase I/II/III
RGX-202	REGENXBIO	ΔR4-23 (Includes CT)	AAV8	Spc5-12	Phase I/II

AAV, adeno-associated virus.

transgene. AAV vector genomes do not integrate into the host DNA, but are instead maintained as episomal chromatin with the potential for long-term persistent transgene expression^{131,132}. However, in practice, AAV genomes are progressively lost from treated dystrophic muscle so that micro-dystrophin expression would be expected to progressively diminish, leading to a recurrence of dystrophic pathology¹³³. Epigenetic silencing of the micro-dystrophin transgene cassette might also contribute to a loss of expression over time¹³⁴. Intriguingly, Mollard et al.¹³⁵ recently reported a reduction in AAV transgene expression in post-regeneration mouse muscle. In this study, muscle necrosis and regeneration was induced by injection of cardiotoxin, and AAV1 particles were subsequently injected at time points when regeneration was completed and muscle morphology restored (3 weeks and 42 weeks after injury). Transgene expression was reduced in these animals relative to uninjured control animals, whereas there was no difference in vector genome numbers or subcellular localization. A similar effect was observed in *mdx* mouse muscle (which undergoes asynchronous necrosis and regeneration), suggesting that dystrophic pathology itself might be a limitation to the effectiveness of therapies that require AAV for delivery¹³⁵.

Cell therapy

Cell therapies for DMD aim to treat the disease via the transplantation of dystrophin-expressing pro-myogenic cells into patient muscle. Such therapies can involve cells derived from healthy, histocompatible donors (allogenic) or via patient-derived cells that are genetically corrected to express dystrophin *ex vivo* (autologous). Healthy cells are administered either via intramuscular injection (which can involve multiple injections per muscle) or via systemic administration. In both cases, the transplanted cell population expands, undergoes myogenic differentiation and fuses to generate new myotubes and/or integrate with existing or regenerating myofibres. Initial results in the *mdx* mouse demonstrated that implanted healthy neonatal muscle progenitor cells (myoblasts) can fuse with pre-existing *mdx* myofibres and render them dystrophin positive^{136,137}. Subsequently, multiple other cell sources have been explored for cell transplantation, including satellite cells¹³⁸, bone marrow-derived myogenic cells¹³⁹, side population cells¹⁴⁰, mesoangioblasts¹⁴¹, pericytes¹⁴², CD133⁺ cells¹⁴³ and induced pluripotent stem cells (iPSCs)¹⁴⁴. Despite promising results in preclinical studies, results in human patients using these approaches have been relatively disappointing. For example, patients with DMD treated with a series of high-density injections of normal myoblast allotransplants (under tacrolimus immunosuppression) exhibited dystrophin expression that was mostly restricted to the area surrounding the injection sites and ranged from the presence of a single dystrophin-positive myotube to positivity in 26% of myofibres¹⁴⁵. In contrast, CD133⁺ cells introduced via intramuscular injection failed to fuse with the myofibres in muscle

from patients with DMD¹⁴³. Similarly, intra-arterial injection of mesoangioblasts derived from HLA-matched healthy donors resulted in the detection of dystrophin expression, but no functional improvement¹⁴¹.

Cell therapies for DMD face several important challenges¹⁴⁶. In many cases, obtaining sufficient numbers of cells to treat all muscles is difficult, especially for cell types such as satellite cells. Transplanted cells can face immune rejection, and typically large numbers of the donor cells die shortly after injection¹⁴⁷. Delivery also constitutes a major challenge, as cells can exhibit reduced potential for migration or aggregate inside blood vessels following a failure to extravasate, which can potentially lead to pulmonary embolism or accumulation in filter organs¹⁴². Delivery to disease-critical muscles such as the diaphragm is also particularly challenging.

A novel alternative cell therapy approach using cardiosphere-derived cells (CDCs) has been pioneered by Capricor Therapeutics. Allogenic CDCs derived from healthy donors have been administered to patients with DMD via intracoronary¹⁴⁸ and intravenous¹⁴⁹ routes. Although these have the potential to express wild-type dystrophin protein, this is not the goal of the therapy *per se*. Instead, CDCs are hypothesized to release extracellular vesicles containing cargo molecules that exert anti-inflammatory and anti-fibrotic effects. In a recent double-blind, placebo-controlled, phase II clinical trial (NCT03406780, HOPE-2) patients with DMD were intravenously injected every 3 months with 1.5×10^8 CDCs (CAP-1002) for a total of four administrations¹⁴⁹. CAP-1002-treated patients exhibited a slowing of the loss of upper limb function, together with improvements in cardiac structure and function¹⁴⁹. An open-label extension study is ongoing (NCT04428476), and a phase III trial (NCT05126758, HOPE-3) is currently recruiting.

ENCell is conducting a phase I clinical trial (NCT05338099) in patients with DMD for its stem cell therapy EN001 based on the transfer of Wharton's jelly (umbilical cord)-derived mesenchymal stem cells.

Gene editing

With the repurposing of the CRISPR–Cas9 system for gene editing in mammalian cells, there has been intense interest in deploying this technology for the treatment of DMD¹⁵⁰. In its simplest configuration, the CRISPR–Cas9 system consists of the Cas9 endonuclease, which induces double-strand DNA breaks (DSBs), and a single guide RNA (sgRNA) that acts to programme the Cas9 such that it cuts at a specific DNA sequence. Notably, the use of multiple guides enables the possibility of multiplex gene editing¹⁵¹. The host cell DNA damage repair machinery is of key importance for the success of CRISPR–Cas9 therapies, with the non-homologous end joining (NHEJ) pathway being the most relevant for the purposes of this Review.

Multiple CRISPR–Cas9-based strategies have been proposed for the treatment of DMD. The first demonstrations of CRISPR–Cas9-mediated correction in the context of DMD used an exon excision

approach^{152–154}. This strategy is conceptually similar to exon skipping, whereby two DSBs are induced in intronic sequences flanking a target exon using a pair of sgRNAs and was initially demonstrated for *Dmd* exon 23 in the *mdx* mouse. The resulting lesions are joined via the NHEJ pathway and the intervening DNA removed. Such a corrected locus would now be ‘permanently exon skipped’ as the preceding exon (exon 22) will be spliced onto the following exon (exon 24).

Myofibres that re-express dystrophin are believed to have a selection advantage, meaning that they are progressively enriched over time¹⁵⁵. Furthermore, early treatment in dystrophic mice is more effective than treatment at the adult stage, possibly as the former approach leads to tolerization towards dystrophin-associated antigens. The editing of satellite cells is desirable, as the resulting corrected stem cells will continue to add myonuclei with the potential to express dystrophin during growth and regeneration throughout the life of the treated individual. However, there have been conflicting reports regarding the potential of AAV vectors to transduce satellite cells^{152,156–158}.

Excitingly, multiplex gene editing enables the simultaneous deletion of multiple exons (analogous to multi-exon skipping described above), with the potential for a single therapy that could be applied to a large proportion of patients^{144,159}. An alternative approach is the single cut strategy, in which the targeted introduction of an indel is used to either disrupt a splicing motif, such as an exon splicing enhancer or splice site, or reframe a transcript¹⁵⁵.

Vertex Pharmaceuticals and Sarepta are developing CRISPR–Cas9-based therapies for DMD, although both are at the discovery or preclinical phase. The most clinically advanced DMD CRISPR therapy is CRD-TMH-001 developed by a non-profit organization, Cure Rare Disease, in collaboration with the University of Massachusetts. Few details are publicly available about CRD-TMH-001 other than it is designed to activate dystrophin expression using a CRISPR activation (CRISPRa) approach. CRISPRa uses a catalytically inactive Cas9 variant (dCas9) fused to an effector domain (such as VP64) that promotes transcriptional activation without the introduction of DNA DSBs^{160,161}. An *n* = 1 clinical trial (NCT05514249) with CRD-TMH-001 was initiated, but Cure Rare Disease announced that the single 27-year-old trial participant had died¹⁶². Within 1 week of treatment the patient suffered acute respiratory distress and cardiac arrest, leading to death at day 8 after injection¹⁶³. Cure Rare Disease has multiple other personalized CRISPR-based therapies in preclinical development¹⁶⁴.

Most CRISPR–Cas9 therapeutics for DMD rely on the use of AAV vectors for delivery of the gene editing apparatus and, as such, are subject to all of the limitations of these delivery vectors described above (especially considering the high doses of vector that will be required). In addition, there are multiple additional CRISPR–Cas9-specific limitations that must be addressed before such strategies can be translated into new therapies. First, deleterious off-target editing events must be carefully considered. Non-productive on-target editing also has the potential to corrupt myonuclei, leading to a patchy pattern of dystrophin in treated myofibres¹⁶⁵. Pre-existing anti-Cas9 antibodies and T cells are relatively common in the general population^{166–168}, which may further limit the applicability of these therapies.

Multiple other CRISPR-based technologies are under investigation for the treatment of DMD and are considered here briefly. A detailed discussion of these approaches is beyond the scope of this article, but has been presented elsewhere¹⁵⁰.

Precise gene editing can be achieved by leveraging the homology-directed repair (HDR) DNA repair pathway. HDR-based approaches require the introduction of a single DSB near to the target

edit site and the provision of a single-stranded oligodeoxynucleotide (ssODN) repair template. Importantly, HDR is only active in cycling cells, meaning that its *in vivo* utility in postmitotic tissues such as muscle is limited. However, HDR-based approaches might be used for *ex vivo* correction of cells from patients with DMD¹⁶⁹. Furthermore, an HDR strategy was applied at the zygote stage to restore dystrophin expression in the *mdx* mouse¹⁷⁰.

Base editing is a CRISPR strategy that can induce targeted single nucleotide variants into target DNA^{171,172}. Base editing typically uses a ‘nickase’ Cas9 (nCas9) enzyme, which is capable of cleaving only one strand, fused to a base editing enzyme such as the adenosine base editor, ABE, which is derived from the *Escherichia coli* TadA protein¹⁷¹. For the nCas9–ABE system, a single-strand break (SSB) is generated on one DNA strand, while the ABE effector module catalyses the transition of an adenosine base to an inosine on the opposite strand. Inosine either functions as a guanosine base or is converted into guanosine by the base excision repair pathway¹⁷³. Base editing using the nCas9–ABE system has been used to correct the nonsense mutation in the *mdx* mouse¹⁷⁴ and to achieve genomic DNA-level exon skipping via splice site disruption in dystrophic Δ Ex51 mice¹⁷⁵. Base editing has the advantage of minimizing the possibility of deleterious editing events such as indel formation and chromosomal rearrangements as no DSBs are formed. However, the nCas9–ABE system is large, and so strategies such as split vector (trans-splicing AAV) approaches have been used for *in vivo* delivery^{174,175}.

Prime editing is an alternative gene editing system that can directly install specific edits including transitions, transversions, insertions and deletions into target genomes¹⁷⁶. The prime editing system consists of a catalytically impaired Cas9 (nCas9) endonuclease fused to a reverse transcriptase (RT) enzyme and a specialized prime editing guide RNA (pegRNA) that directs the Cas9–RT fusion protein to the complementary target site and also encodes the intended edit. Following nicking of the target sequence by nCas9, the pegRNA binds to the exposed strand, which serves as a primer for the RT reaction. New complementary DNA specifying the desired edit encoded by the pegRNA is subsequently generated, and the resulting lesion is resolved by ligation and mismatch repair¹⁷⁶. Prime editing has been used to achieve reframing of the dystrophin open reading frame in iPSCs¹⁷⁵. Although prime editing enables the installation of almost any desired edit, delivery of this system to dystrophic muscle *in vivo* remains to be demonstrated.

Utrophin upregulation

Utrophin (*UTRN*) is an autosomal (6q24) parologue of *DMD* that is expressed during fetal development, at the neuromuscular and myotendinous junctions, and during muscle regeneration^{177–179}. The 395 kDa utrophin isoform is upregulated in the muscles of dystrophin-deficient mouse models (such as *mdx* and *mdx52*)^{16,17} and in patients with DMD¹⁸⁰, where it relocates to the sarcolemma and can bind to DAPC components¹⁸¹. These observations suggest that utrophin can substitute for dystrophin to some extent, and that its upregulation in dystrophic muscle might be a compensatory and protective mechanism. Accordingly, dystrophic pathology is severe in the dystrophin and utrophin double knockout (dKO) mouse^{182,183}, and genetic overexpression of full-length utrophin by 3- to 4-fold on an *mdx* background was sufficient to prevent the development of dystrophic pathological features^{184,185}. Upregulation of utrophin is a particularly attractive therapeutic strategy as a single approach could be used to treat all patients regardless of mutation type. Furthermore, the *UTRN* gene is invariably unaffected in patients with DMD, and its expression is ubiquitous¹⁸⁶, meaning that

patients are already tolerized to UTRN-associated antigens¹⁸⁷. Ubiquitous overexpression of a utrophin transgene in mice was also found to be non-toxic¹⁸⁶.

The leading strategy for utrophin upregulation is the use of small-molecule modulators. The drug ezutromid (SMT C1100; Summit Therapeutics), a 2-arylbenzoxazole, was identified in a screen of small molecules that promoted transcriptional activation of the utrophin A promoter¹⁸⁸. Daily oral administration of this compound improved muscle pathology in the *mdx* mouse¹⁸⁹. Investigation of ezutromid in an open-label phase II clinical trial (NCT02858362) showed evidence of utrophin upregulation and reduced muscle turnover after 24 weeks of treatment¹⁹⁰, but this effect was not present at 48 weeks¹⁹¹. Development of ezutromid was discontinued on the basis of these disappointing findings. Subsequent investigation revealed that ezutromid binds to, and acts as an antagonist of, the aryl hydrocarbon receptor (AHR) and that other AHR antagonists similarly promoted utrophin expression¹⁹¹, suggesting that this could be used for future drug development. It has been proposed that the lack of sustained efficacy of ezutromid is a consequence of its cellular metabolism leading to reduced drug exposure¹⁹¹, and that such metabolism of future utrophin modulator drugs could be avoided through medicinal chemistry optimization (A. Russell, personal communication). Similarly, second-generation utrophin upregulator compounds that are derivatives of ezutromid with improved activity, such as SMT022357, have been reported¹⁹².

The sequence of utrophin is highly similar to that of dystrophin^{177,178}. As such, internally truncated utrophin minigene variants have been generated, analogous to the micro-dystrophin approach described above^{193,194}. To this end, transgenic micro-utrophin expression resulted in improvements in histopathology and reduced serum CK levels in *mdx* mice¹⁹³ and various canine models¹⁸⁷. Similarly, AAV-delivered micro-utrophin constructs improved muscle function and increased lifespan in the severely affected dKO mouse¹⁹⁵.

Several other approaches have been explored for utrophin upregulation in preclinical models including CRISPRa¹⁶⁰, deletion of miRNA target sites in the *UTRN* 5' UTR¹⁹⁶ and artificial transcription factors¹⁹⁷.

Notably, there are important differences in the functionality of utrophin and dystrophin, which suggest that utrophin might be insufficient to fully compensate for the absence of dystrophin. Specifically, utrophin is not capable of anchoring nNOS at the sarcolemma¹⁹⁸ nor of rescuing the disordered pattern of the microtubule network that is observed in dystrophic myofibres¹⁹⁹. Furthermore, there is also evidence that the functional benefit of utrophin minigenes is substantially less than that of full-length dystrophin¹⁸⁴.

Other therapeutic approaches

A multitude of other disease-modifying approaches for DMD have been investigated that target the various pathological features of DMD. These include anti-inflammatory, vasodilating NO donor, modulation of Ca²⁺ handling, anti-fibrotic, antioxidant and myostatin pathway blockade strategies. A detailed discussion of these strategies is beyond the scope of this Review, and they have been reviewed elsewhere^{200,201}. However, two promising strategies are of note, given their interesting and distinct mechanisms of action. Givinostat is a small-molecule histone deacetylase inhibitor (HDACi) developed by Italfarmaco as an epigenetic therapy for DMD. A recently completed randomized, double-blind, placebo-controlled phase III trial of givinostat (NCT02851797, EPIDYS) reported slowed disease progression in ambulant boys with DMD in the treatment arm. Eighteen months of givinostat treatment was reported to result in improved performance (that is, a reduced decline) in timed

function tests, muscle strength analysis and fat infiltration in the vastus lateralis muscle as measured by magnetic resonance spectroscopy, according to Italfarmaco²⁰². HDAC activity is elevated in dystrophic muscle as a consequence of impaired NO signalling²⁰³, resulting in widespread alterations in gene expression that contribute to DMD pathology. Previously, givinostat-mediated HDAC inhibition was shown to improve muscle histopathology in the *mdx* mouse¹⁹ and in a phase I/II clinical trial (NCT01761292) in boys with DMD²⁰⁴.

Edgewise Therapeutics is developing EDG-5506, an orally bioavailable, small-molecule inhibitor of myosin that is specific to type II (fast twitch) fibres but not active against type I (slow twitch) fibres. A phase II clinical trial of EDG-5506 in patients with DMD (NCT05540860, LYNX) is currently recruiting. Fast twitch myofibres are more susceptible to contraction-induced damage in DMD^{205,206}, and individuals with inactivating variants in the *MYH2* gene encoding fast myosin exhibit mild proximal muscle weakness and typically lose ambulation²⁰⁷. As such, EDG-5506 is designed to protect dystrophic muscle by inhibiting the contraction of fast twitch myofibres and thereby paradoxically reducing muscle strength. Edgewise is pursuing clinical trials in both patients with DMD and those with BMD²⁰⁸.

Combination therapy

It is increasingly apparent that there will likely be no 'one size fits all' therapy for DMD. The diversity of DMD-causing genetic insults means that a degree of personalization will be required to address specific mutation types. In addition, dystrophin restoration alone might be insufficient to correct the disease in patients with established pathology. For example, the progressive decline in muscle quality that results from chronic inflammation and fibro/fatty degeneration means that there might be relatively few fibres left in which to restore dystrophin by the time treatment is administered. Therefore, combination therapies capable of simultaneously restoring dystrophin expression and addressing the downstream molecular and cellular pathologies that occur in dystrophic muscle are desirable²⁰⁹. Notably, most novel DMD treatments are technically combination therapies as most patients are subject to chronic steroid regimens. However, there is a paucity of preclinical studies on the combination of experimental therapies with clinically relevant glucocorticoid cotreatment²¹⁰.

Although restoration of dystrophin protein expression by exon skipping has now been reported in numerous preclinical studies, achieving in human patients the kind of protein levels observed in dystrophic animals constitutes a significant challenge. Combining various dystrophin restoration strategies might lead to a synergistic benefit. For example, the combination of ASO-mediated and AAV-U7-snRNA-mediated exon skipping strategies led to reduced AAV vector loss and prolonged dystrophin expression²¹¹. AAV is a single-stranded DNA virus, and so second strand synthesis is required before a therapeutic transgene can be expressed. This results in a time delay between injection of the virus and therapeutic dystrophin rescue, during which time the muscle turnover associated with dystrophic pathology results in the loss of AAV vector genomes from treated muscle, and therefore a reduction in therapeutic efficacy¹³³. Pre-treatment of *mdx* mice with ASOs (PPMO conjugates) resulted in a transient restoration of high levels of dystrophin and concomitant stabilization of muscle turnover, and then therapeutic AAV vectors were injected 2 weeks later²¹¹. This pre-treatment strategy resulted in a tenfold increase in dystrophin protein expression after 6 months, compared with mice treated with AAV alone²¹¹. Importantly, PPMO pre-treatment also enhanced AAV-mediated micro-dystrophin therapy²¹¹, meaning that

this combination strategy is likely to be beneficial for enhancing any therapy that relies on AAV transduction. It will be interesting to determine whether such an approach can be used to improve the efficacy of CRISPR–Cas9-mediated dystrophin recovery.

Conventional pharmacological means have also been used to enhance the efficacy of exon skipping, including cotreatment with so-called skipping enhancer drugs such as dantrolene²¹² and with various HDAC inhibitors²¹³.

Similarly, the possibility of combining dystrophin re-expression and utrophin upregulation has also been investigated in the *mdx* mouse²¹⁴. Genetic overexpression of utrophin combined with PPMO treatment resulted in a complete restoration of muscle function to wild-type levels, which was not observed for either approach in isolation, as measured by force drop measurements in isolated extensor digitorum longus muscles²¹⁴. Both dystrophin and utrophin can coexist at the sarcolemma, suggesting that this approach could be used in patients with DMD. However, very high levels of utrophin transgene expression in a wild-type mouse resulted in a decrease in dystrophin expression, suggesting that these two proteins compete for a finite number of occupancy sites at the sarcolemma²¹⁴. On balance, this is not likely to be an issue for therapy as such high levels of utrophin are very unlikely to be achieved, and the two proteins co-localize at the sarcolemma when expressed at levels that prevent pathology in the mouse.

Cell therapy has also been combined with AAV–micro-dystrophin therapy in the dystrophic CXMD dog model²¹⁵. Cotreatment of AAV with bone marrow-derived mesenchymal stromal cells (MSCs) resulted in an improvement in the dystrophic phenotype in the single dog tested, which was attributed to the immunomodulatory properties of the MSCs²¹⁵.

Dystrophin restoration therapies might be augmented by combining them with a microRNA (miRNA) inhibition strategy. miRNAs are small RNA molecules that typically regulate gene expression by binding to partially complementary mRNAs and repressing translation and/or inducing target transcript degradation²¹⁶. For example, miR-31 is highly upregulated in dystrophic muscle^{16,217,218} and has a target site in the 3' untranslated region (UTR) of the dystrophin mRNA²¹⁹. This miRNA–target interaction is not expected to have any effect in the dystrophic condition, as dystrophin protein is not expressed. However, when dystrophin expression is restored via exon skipping, the high levels of miR-31 limit the degree of protein recovery²¹⁹. Inhibition of miR-31 using expressed miRNA sponges or anti-miRNA oligonucleotides resulted in enhanced dystrophin rescue after exon skipping using the U1snRNA system in the *mdx* mouse²¹⁹. Similarly, miRNA regulation of dystrophin expression was shown to account for differences in dystrophin protein levels between patients with BMD with varying levels of disease severity²²⁰, suggesting that miRNA inhibition might be further exploited to maximize dystrophin rescue in a therapeutic context. Notably, miRNAs that regulate utrophin expression have also been identified²²¹, and masking of a site for the let-7c miRNA on the utrophin 3' UTR resulted in functional improvement in the *mdx* mouse by inducing utrophin protein upregulation²²². Another miRNA, miR-29, was shown to suppress the expression of pro-fibrotic factors in dystrophic muscle, such that synthetic mimics of this miRNA could be used for therapeutic purposes. However, the combination of such an approach with a dystrophin restoration therapy has not been tested yet.

Many other approaches have combined dystrophin restoration with strategies to improve muscle quality. For example, co-delivery of two AAV vectors, one encoding micro-dystrophin and the other

encoding the muscle isoform of insulin-like growth factor 1 (IGF1), resulted in synergistic benefits that were not observed for either vector in isolation²²³. Specifically, stabilization of myofibre turnover and protection against contraction-induced injury (attributed to expression of micro-dystrophin) was accompanied by an increase in muscle mass and strength attributed to the *Igf1* transgene²²³. The combination of exon skipping and myostatin blockade (to increase muscle mass) has also been explored in several studies^{224–226}. However, myostatin blockade strategies have so far proved ineffective in DMD clinical trials, which is likely due to the already low circulating levels of myostatin in patients with DMD²²⁷.

Conclusions and perspectives

The genetic insult that underlies DMD is relatively simple, and yet the goal of restoring gene expression has proved to be a substantial challenge. Although there are multiple drugs that have achieved marketing authorization in various jurisdictions, these are applicable to only small subsets of patients, and expert opinion on whether these offer therapeutic benefit is mixed. It is clear that better therapies are still needed. Improved ASO delivery technologies based on peptide, antibody and Fab fragment ASO-bioconjugation strategies, together with novel nucleic acid chemistries, have the potential to overcome the low efficacy of naked PMO-based ASOs, although renal toxicity must be considered carefully. By contrast, therapies based on gene replacement, utrophin upregulation, and disease-modifying approaches are in theory ‘mutation agnostic’ with widespread applicability. However, this notion has been challenged recently, as patients with certain mutation types might be susceptible to anti-transgene T cell immune toxicity. Furthermore, the high diversity of DMD-causing mutations means that personalized medicine approaches will likely be needed to treat all patients. In many cases, there may be insufficient patients to undertake conventional clinical trials. Alternative approaches include the use of Bayesian statistics to predict the pathological trajectory within a single patient or clinical trials with one patient.

The success of dystrophin restoration therapies is likely to be dependent on three key factors. First, the total amount of dystrophin restored. Evidence from preclinical models suggests that >15% of wild-type levels are required for functional correction²²⁸, and levels >10–20% were associated with less severe pathology in patients with BMD^{229,230}. Second, the quality of dystrophin produced. Therapies such as exon skipping, micro-dystrophin gene therapy and CRISPR exon deletion/skipping result in generation of internally truncated pseudo-dystrophins that are expected to have reduced functionality relative to full-length wild-type dystrophin. The degree of internal truncation differs between therapeutic strategies and so should be considered carefully. Third, the correct localization of dystrophin at the sarcolemma. We have recently demonstrated the importance of uniform sarcolemmal dystrophin for stabilizing turnover in dystrophic muscle²³¹. This is important because the various dystrophin restoration strategies can lead to distinct patterns of sarcolemmal coverage^{165,232}.

Although it is often assumed that re-expression of functional dystrophin protein in the muscles of patients with DMD will correct the disease, combination therapies might be required to both correct the initial genetic insult and address the myriad molecular pathologies that occur in dystrophic muscle. This is especially important in the case of patients with low overall muscle quality and as a consequence of established pathologies and chronic disease. However, performing clinical trials for combination therapies is likely to be highly complex, especially if the individual therapies to be combined are only minimally

efficacious in isolation. It is therefore likely that such combinations will necessarily consist of already-approved single therapies. Facilitating such a therapy might require cooperation between pharmaceutical companies with distinct intellectual property portfolios.

The recent approval of the micro-dystrophin gene therapy SRP-9001 developed by Sarepta is an enormous step forwards for the DMD field and would follow on from the highly successful drug zolgensma for the treatment of SMA. Whereas zolgensma is a life-changing treatment, there has not been an equivalent breakthrough for DMD. Importantly, early therapeutic intervention in SMA is much more effective than treatment later in life²³³. Whether such early intervention, before the onset of pathology, would be beneficial in the case of DMD is unknown. Identifying applicable patients with DMD for early treatment and trial participation would necessitate the implementation of newborn screening programmes. Notably, there is delay in diagnosis of 2.2 years for DMD, which has largely remained unchanged over the past three decades²³⁴.

In conclusion, there is a plethora of molecular medicine approaches that are under investigation, or approved for use, in patients with DMD. However, there is still a need for improved therapies with higher efficacy and that are applicable to a wider group of patients. In particular, treatments that can correct cardiac pathology are needed for maximum benefit to patients. Additionally, treatments that are effective for the whole lifetime of a patient, or that can at least be repeat administered, are also desirable. Knowledge gained from current drug development programmes, and especially from clinical data, will be crucial for the ongoing development of therapies for DMD, but will also be highly useful in the development of treatments for other diseases.

Published online: 31 August 2023

References

1. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. *Cell* **51**, 919–928 (1987).
2. Moriuchi, T., Kagawa, N., Mukoyama, M. & Hizawa, K. Autopsy analyses of the muscular dystrophies. *Tokushima J. Exp. Med.* **40**, 83–93 (1993).
3. Chiang, D. Y. et al. Relation of cardiac dysfunction to rhythm abnormalities in patients with Duchenne or Becker muscular dystrophies. *Am. J. Cardiol.* **117**, 1349–1354 (2016).
4. Ishikawa, Y. et al. Duchenne muscular dystrophy: survival by cardio-respiratory interventions. *Neuromuscul. Disord.* **21**, 47–51 (2011).
5. Duan, D., Goemans, N., Takeda, S., Mercuri, E. & Aartsma-Rus, A. Duchenne muscular dystrophy. *Nat. Rev. Dis. Prim.* **7**, 14 (2021).
6. Petrof, B. J., Shrager, J. B., Stedman, H. H., Kelly, A. M. & Sweeney, H. L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. *Proc. Natl Acad. Sci. USA* **90**, 3710–3714 (1993).
7. Ricotti, V. et al. Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. *J. Neurol. Neurosurg. Psychiatry* **84**, 698–705 (2013).
8. Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. *Lancet Neurol.* **17**, 347–361 (2018).
9. Kourakis, S. et al. Standard of care versus new-wave corticosteroids in the treatment of Duchenne muscular dystrophy: can we do better? *Orphanet J. Rare Dis.* **16**, 117 (2021).
10. Vestergaard, P. et al. Fracture risk in patients with muscular dystrophy and spinal muscular atrophy. *J. Rehabil. Med.* **33**, 150–155 (2001).
11. Hoffman, E. P. et al. Varnolone trial in Duchenne muscular dystrophy shows dose-related improvement of muscle function. *Neurology* **93**, e1312–e1323 (2019).
12. Ervasti, J. M. & Campbell, K. P. Membrane organization of the dystrophin-glycoprotein complex. *Cell* **66**, 1121–1131 (1991).
13. Rybakova, I. N., Patel, J. R. & Ervasti, J. M. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. *J. Cell Biol.* **150**, 1209–1214 (2000).
14. Spence, H. J., Dhillon, A. S., James, M. & Winder, S. J. Dystroglycan, a scaffold for the ERK-MAP kinase cascade. *EMBO Rep.* **5**, 484–489 (2004).
15. Dumont, N. A. et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. *Nat. Med.* **21**, 1455–1463 (2015).
16. Roberts, T. C. et al. Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration. *Hum. Mol. Genet.* **24**, 6756–6768 (2015).
17. van Westering, T. L. E. et al. Mutation-independent proteomic signatures of pathological progression in murine models of duchenne muscular dystrophy. *Mol. Cell Proteom.* **19**, 2047–2067 (2020).
18. Sandonà, D. & Betto, R. Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. *Expert. Rev. Mol. Med.* **11**, e28 (2009).
19. Consalvi, S. et al. Histone deacetylase inhibitors in the treatment of muscular dystrophies: epigenetic drugs for genetic diseases. *Mol. Med.* **17**, 457–465 (2011).
20. Boldrin, L., Zammit, P. S. & Morgan, J. E. Satellite cells from dystrophic muscle retain regenerative capacity. *Stem Cell Res.* **14**, 20–29 (2015).
21. Meng, J., Bencze, M., Asfahani, R., Muntoni, F. & Morgan, J. E. The effect of the muscle environment on the regenerative capacity of human skeletal muscle stem cells. *Skelet. Muscle* **5**, 11 (2015).
22. Wang, Y. et al. Dystrophin is a tumor suppressor in human cancers with myogenic programs. *Nat. Genet.* **46**, 601–606 (2014).
23. Gallia, G. L. et al. Genomic analysis identifies frequent deletions of dystrophin in olfactory neuroblastoma. *Nat. Commun.* **9**, 5410 (2018).
24. Bladen, C. L. et al. The TREAT-NMD DMD global database: analysis of more than 7,000 duchenne muscular dystrophy mutations. *Hum. Mutat.* **36**, 395–402 (2015).
25. White, S. J. et al. Duplications in the DMD gene. *Hum. Mutat.* **27**, 938–945 (2006).
26. Nakamura, A. et al. Deletion of exons 3–9 encompassing a mutational hot spot in the *DMD* gene presents an asymptomatic phenotype, indicating a target region for multixon skipping therapy. *J. Hum. Genet.* **61**, 663–667 (2016).
27. Nakamura, A. et al. Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. *J. Hum. Genet.* **62**, 459–463 (2017).
28. Muntoni, F., Torelli, S. & Ferlini, A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. *Lancet Neurol.* **2**, 731–740 (2003).
29. England, S. B. et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. *Nature* **343**, 180–182 (1990).
30. Matsunura, K. et al. Immunohistochemical analysis of dystrophin-associated proteins in Becker/Duchenne muscular dystrophy with huge in-frame deletions in the NH2-terminal and rod domains of dystrophin. *J. Clin. Invest.* **93**, 99–105 (1994).
31. Monaco, A. P., Bertelson, C. J., Liechti-Gallati, S., Moser, H. & Kunkel, L. M. An explanation for the phenotypic differences between patients bearing partial deletions of the *DMD* locus. *Genomics* **2**, 90–95 (1988).
32. Anwar, S., He, M., Lim, K. R. Q., Maruyama, R. & Yokota, T. A genotype-phenotype correlation study of exon skip-equivalent in-frame deletions and exon skip-amenable out-of-frame deletions across the *DMD* gene to simulate the effects of exon-skipping therapies: a meta-analysis. *J. Pers. Med.* **11**, 46 (2021).
33. Koenig, M. et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. *Am. J. Hum. Genet.* **45**, 498–506 (1989).
34. Malhotra, S. et al. Frame-shift deletions in patients with Duchenne and Becker muscular dystrophy. *Science* **242**, 755–759 (1988).
35. Del Rio-Pertuz, G., Morataya, C., Parmar, K., Dubay, S. & Argueta-Sosa, E. Dilated cardiomyopathy as the initial presentation of Becker muscular dystrophy: a systematic review of published cases. *Orphanet J. Rare Dis.* **17**, 194 (2022).
36. Aartsma-Rus, A. et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. *Hum. Mutat.* **30**, 293–299 (2009).
37. Syed, Y. Y. Eteplirsen: first global approval. *Drugs* **76**, 1699–1704 (2016).
38. Heo, Y.-A. Golodirsen: first approval. *Drugs* **80**, 329–333 (2020).
39. Shirley, M. Casimersen: first approval. *Drugs* **81**, 875–879 (2021).
40. Komaki, H. et al. Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy. *Sci. Transl. Med.* **10**, eaan0713 (2018).
41. Clemens, P. R. et al. Safety, tolerability, and efficacy of Viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. *JAMA Neurol.* **77**, 982–991 (2020).
42. Dhillon, S. Viltolarsen: first approval. *Drugs* **80**, 1027–1031 (2020).
43. Aartsma-Rus, A. & Goemans, N. A sequel to the eteplirsen saga: eteplirsen is approved in the United States but was not approved in Europe. *Nucleic Acid. Ther.* **29**, 13–15 (2018).
44. Muntoni, F., Fletcher, S. & Wilton, S. Response to “Railroading at the FDA”. *Nat. Biotechnol.* **35**, 207–209 (2017).
45. Aartsma-Rus, A. & Krieg, A. M. FDA approves eteplirsen for Duchenne muscular dystrophy: the next chapter in the eteplirsen saga. *Nucleic Acid. Ther.* **27**, 1–3 (2017).
46. Dowling, J. J. Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line. *Nat. Rev. Neurol.* **12**, 675–676 (2016).
47. FDA Briefing Document, Peripheral and Central Nervous System Drugs Advisory Committee Meeting, 22 January 2016, NDA 206488, Eteplirsen (FDA, 2016); <https://www.fda.gov/files/advisory%20committees/published/FDA-Briefing-Information-for-the-January-22-2016-Meeting-of-the-Peripheral-and-Central-Nervous-System-Drugs-Advisory-Committee.pdf>.
48. No authors listed. Railroading at the FDA. *Nat. Biotechnol.* **34**, 1078–1078 (2016).
49. Charleston, J. S. et al. Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production. *Neurology* **90**, e2146–e2154 (2018).
50. Servais, L. et al. Long-term safety and efficacy data of golodirsen in ambulatory patients with Duchenne muscular dystrophy amenable to exon 53 skipping: a first-in-human, multicenter, two-part, open-label, phase 1/2 trial. *Nucleic Acid. Ther.* **32**, 29–39 (2022).
51. Mendell, J. R. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. *Ann. Neurol.* **74**, 637–647 (2013).

52. Mendell, J. R. et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. *Ann. Neurol.* **79**, 257–271 (2016).

53. Wu, B. et al. Dose-dependent restoration of dystrophin expression in cardiac muscle of dystrophic mice by systemically delivered morpholino. *Gene Ther.* **17**, 132–140 (2010).

54. Mendell, J. R. et al. Comparison of long-term ambulatory function in patients with Duchenne muscular dystrophy treated with eteplirsen and matched natural history controls. *J. Neuromuscul. Dis.* **8**, 469–479 (2021).

55. Roberts, T. C., Langer, R., Wood, M. J. A. Advances in oligonucleotide drug delivery. *Nat. Rev. Drug Discov.* **19**, 673–694 (2020).

56. Betts, C. et al. Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. *Mol. Ther. Nucleic Acids* **1**, e38 (2012).

57. Betts, C. A. et al. Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice. *Sci. Rep.* **5**, 8986 (2015).

58. Sarepta therapeutics reports positive clinical results from phase 2 MOMENTUM study of SRP-5051 in patients with duchenne muscular dystrophy amenable to skipping exon 51. *Sarepta Therapeutics* (5 May 2021); <https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-reports-positive-clinical-results-phase-2>.

59. Moulton, H. M. & Moulton, J. D. Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. *Biochim. Biophys. Acta* **1798**, 2296–2303 (2010).

60. Amantana, A. et al. Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. *Bioconjug. Chem.* **18**, 1325–1331 (2007).

61. PepGen reports positive data from phase 1 trial of PGN-EDO51 for the treatment of Duchenne muscular dystrophy. *PepGen* (28 September 2022); <https://investors.pepgen.com/news-releases/news-release-details/pepgen-reports-positive-data-phase-1-trial-pgn-edo51-treatment/>.

62. Kreher, N. et al. P194 Development of a novel, EEV-conjugated PMO for Duchenne muscular dystrophy. *Neuromuscul. Disord.* **32**, S126 (2022).

63. Avidity Biosciences Announces Phase 1/2 EXPLORE44TM Trial of AOC 1044 for Duchenne Muscular Dystrophy Mutations Amenable to Exon 44 Skipping (Avidity Biosciences, 2022); <https://aviditybiosciences.investorroom.com/2022-10-11-Avidity-Biosciences-Announces-Phase-1-2-EXPLORE44-TM-Trial-of-AOC-1044-for-Duchenne-Muscular-Dystrophy-Mutations-Amenable-to-Exon-44-Skipping>.

64. Desjardins, C. A. et al. Enhanced exon skipping and prolonged dystrophin restoration achieved by TFR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice. *Nucleic Acids Res.* **50**, 11401–11414 (2022).

65. Aoki, Y. et al. Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. *Proc. Natl. Acad. Sci. USA* **109**, 13763–13768 (2012).

66. Béroud, C. et al. Multixon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. *Hum. Mutat.* **28**, 196–202 (2007).

67. Wave Life Sciences provides positive update on proof-of-concept study for WVE-N531 in Duchenne muscular dystrophy. *GlobeNewswire News Room* (WAVE Life Science USA, 2022); <https://www.globenewswire.com/news-release/2022/12/19/2576214/0/en/Wave-Life-Sciences-Provides-Positive-Update-on-Proof-of-Concept-Study-for-WVE-N531-in-Duchenne-Muscular-Dystrophy.html>.

68. Kandasamy, P. et al. Control of backbone chemistry and chirality boost oligonucleotide splice switching activity. *Nucleic Acids Res.* **50**, 5443–5466 (2022).

69. Iwamoto, N. et al. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. *Nat. Biotechnol.* **35**, 845–851 (2017).

70. Wan, W. B. et al. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages. *Nucleic Acids Res.* **42**, 13456–13468 (2014).

71. Wave Life Sciences provides update on phase 1b/2a PRECISION-HD trials - Wave Life Sciences. Wave Life Sciences (2021); <https://ir.wavelifesciences.com/news-releases/news-release-details/wave-life-sciences-provides-update-phase-1b2a-precision-hd>.

72. Wave Life Sciences announces discontinuation of suvodirsen development for Duchenne muscular dystrophy. Wave Life Sciences (16 December 2019); <https://ir.wavelifesciences.com/news-releases/news-release-details/wave-life-sciences-announces-discontinuation-suvodirsen>.

73. Ito, K. et al. Renadirsren, a novel 2'OMeRNA/ENA® chimera antisense oligonucleotide, induces robust exon 45 skipping for dystrophin in vivo. *Curr. Issues Mol. Biol.* **43**, 1267–1281 (2021).

74. Goyenvalle, A. et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. *Nat. Med.* **21**, 270–275 (2015).

75. Zarrouki, F. et al. Partial restoration of brain dystrophin and behavioral deficits by exon skipping in the muscular dystrophy X-linked (mdx) mouse. *Ann. Neurol.* **92**, 213–229 (2022).

76. De Angelis, F. G. et al. Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Delta 48-50 DMD cells. *Proc. Natl. Acad. Sci. USA* **99**, 9456–9461 (2002).

77. Goyenvalle, A. et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. *Science* **306**, 1796–1799 (2004).

78. Simmons, T. R. et al. Pre-clinical dose-escalation studies establish a therapeutic range for U7snRNA-mediated DMD exon 2 skipping. *Mol. Ther. Methods Clin. Dev.* **21**, 325–340 (2021).

79. Wein, N. et al. Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. *Nat. Med.* **20**, 992–1000 (2014).

80. Nationwide Children's Hospital Announces Restoration of Full-Length Dystrophin Using dup 2 Gene Therapy Approach (Parent Project Muscular Dystrophy, 2022); <https://www.parentprojectmd.org/nationwide-childrens-hospital-announces-restoration-of-full-length-dystrophin-using-duplication-2-gene-therapy-approach/>.

81. Barton-Davis, E. R., Cordier, L., Shoturma, D. I., Leland, S. E. & Sweeney, H. L. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. *J. Clin. Invest.* **104**, 375–381 (1999).

82. Wagner, K. R. et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. *Ann. Neurol.* **49**, 706–711 (2001).

83. Politano, L. et al. Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. *Acta Myol.* **22**, 15–21 (2003).

84. Malik, V. et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. *Ann. Neurol.* **67**, 771–780 (2010).

85. Hayward, R. S. et al. Adverse effects of a single dose of gentamicin in adults: a systematic review. *Br. J. Clin. Pharmacol.* **84**, 223–238 (2018).

86. Welch, E. M. et al. PTC124 targets genetic disorders caused by nonsense mutations. *Nature* **447**, 87–91 (2007).

87. Ryan, N. J. Ataluren: first global approval. *Drugs* **74**, 1709–1714 (2014).

88. Bushby, K. et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. *Muscle Nerve* **50**, 477–487 (2014).

89. McDonald, C. M. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* **390**, 1489–1498 (2017).

90. No authors listed. Duchenne drug clings on for FDA nod. *Nat. Biotechnol.* **35**, 999 (2017).

91. Campbell, C. et al. Meta-analyses of ataluren randomized controlled trials in nonsense mutation Duchenne muscular dystrophy. *J. Comp. Eff. Res.* **9**, 973–984 (2020).

92. Auld, D. S. et al. Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124. *Proc. Natl. Acad. Sci. USA* **107**, 4878–4883 (2010).

93. McElroy, S. P. et al. A lack of premature termination codon read-through efficacy of PTC124 (Ataluren) in a diverse array of reporter assays. *PLoS Biol.* **11**, e1001593 (2013).

94. Halbert, C. L., Rutledge, E. A., Allen, J. M., Russell, D. W. & Miller, A. D. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. *J. Virol.* **74**, 1524–1532 (2000).

95. Grunzman, A. M. et al. Gene transfer in skeletal and cardiac muscle using recombinant adeno-associated virus. *Curr. Protoc. Microbiol.* <https://doi.org/10.1002/9780471729259.mc14d03s28> (2013).

96. Qiao, C., Koo, T., Li, J., Xiao, X. & Dickson, J. G. Gene therapy in skeletal muscle mediated by adeno-associated virus vectors. *Methods Mol. Biol.* **807**, 119–140 (2011).

97. Gregorevic, P. et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. *Nat. Med.* **10**, 828–834 (2004).

98. Duan, D. Systemic AAV micro-dystrophin gene therapy for duchenne muscular dystrophy. *Mol. Ther.* **26**, 2337–2356 (2018).

99. Bourdon, A. et al. Evaluation of the dystrophin carboxy-terminal domain for micro-dystrophin gene therapy in cardiac and skeletal muscles in the DMDmdx rat model. *Gene Ther.* **29**, 520–535 (2022).

100. Cox, G. A. et al. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. *Nature* **364**, 725–729 (1993).

101. Potter, R. A. et al. Dose-escalation study of systemically delivered rAAVrh74.MHCK7.micro-dystrophin in the mdx mouse model of duchenne muscular dystrophy. *Hum. Gene Ther.* **32**, 375–389 (2021).

102. Yue, Y. et al. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. *Hum. Mol. Genet.* **24**, 5880–5890 (2015).

103. Le Guiner, C. et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. *Nat. Commun.* **8**, 16105 (2017).

104. Salva, M. Z. et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. *Mol. Ther.* **15**, 320–329 (2007).

105. Chicoine, L. G. et al. Vascular delivery of rAAVrh74.MCK.GALGT2 to the gastrocnemius muscle of the rhesus macaque stimulates the expression of dystrophin and laminin $\alpha 2$ surrogates. *Mol. Ther.* **22**, 713–724 (2014).

106. Zygmunt, D. A., Crowe, K. E., Flanigan, K. M. & Martin, P. T. Comparison of serum rAAV serotype-specific antibodies in patients with duchenne muscular dystrophy, becker muscular dystrophy, inclusion body myositis, or GNE myopathy. *Hum. Gene Ther.* **28**, 737–746 (2017).

107. Mendell, J. R. et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with duchenne muscular dystrophy: a nonrandomized controlled trial. *JAMA Neurol.* **77**, 1122–1131 (2020).

108. Willcocks, R. J. et al. Assessment of rAAVrh74.MHCK7.micro-dystrophin gene therapy using magnetic resonance imaging in children with duchenne muscular dystrophy. *JAMA Netw. Open* **4**, e2031851 (2021).

109. Mendell, J. et al. A multicenter randomized, double-blind, placebo-controlled, gene-delivery clinical trial of rAAVrh74.MHCK7.micro-dystrophin for Duchenne muscular dystrophy [Abstr.]. *Neurology* **96** (Suppl. 15), 4478 (2021).

110. Sarepta Therapeutics announces top-line results for part 1 of study 102 evaluating SRP-9001, its investigational gene therapy for the treatment of Duchenne muscular dystrophy. Sarepta Therapeutics (7 January 2021); <https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-announces-top-line-results-part-1-study-102>.

111. Sarepta Therapeutics' investigational gene therapy SRP-9001 for Duchenne muscular dystrophy demonstrates significant functional improvements across multiple studies. *Sarepta Therapeutics* (6 July 2022); <https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-investigational-gene-therapy-srp-9001>.
112. Sarepta Therapeutics announces that U.S. FDA has accepted for filing and granted priority review for the Biologics License Application for SRP-9001, Sarepta's gene therapy for the treatment of ambulant individuals with Duchenne muscular dystrophy. *Sarepta Therapeutics* (28 November 2022); <https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-announces-us-fda-has-accepted-filing-and>.
113. Sarepta Therapeutics announces FDA approval of ELEVITY, the first gene therapy to treat Duchenne muscular dystrophy. *Sarepta Therapeutics* (22 June 2023); <https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-announces-fda-approval-elevitys-first-gene>.
114. Philippidis, A. After patient death, FDA places hold on Pfizer Duchenne muscular dystrophy gene therapy trial. *Hum. Gene Ther.* **33**, 111–115 (2022).
115. Philippidis, A. Pfizer eyes resuming phase III enrollment, investigates phase I b death tied to Duchenne muscular dystrophy candidate. *Hum. Gene Ther.* **33**, 215–217 (2022).
116. Pfizer's new phase 1b results of gene therapy in ambulatory boys with Duchenne muscular dystrophy (DMD) support advancement into pivotal phase 3 study. *Pfizer* (15 May 2020); <https://www.pfizer.com/news/press-release/press-release-detail/pfizers-new-phase-1b-results-gene-therapy-ambulatory-boys>.
117. Philippidis, A. FDA lifts clinical hold on Pfizer DMD gene therapy linked to patient death. *GEN - Genetic Engineering and Biotechnology News* (28 April 2022); <https://www.genengnews.com/topics/genome-editing/gene-therapy/fda-lifts-clinical-hold-on-pfizer-dmd-gene-therapy-linked-to-patient-death/>.
118. Pfizer announces amendment to ongoing gene therapy phase III trial. *Parent Project Muscular Dystrophy* (28 September 2021); <https://www.parentprojectmd.org/pfizer-announces-amendment-to-ongoing-gene-therapy-phase-iii-trial/>.
119. Collaborative analysis reveals 'class effect' in DMD safety issues. *BioSpace* (19 May 2022); <https://www.biospace.com/article/pfizer-sarepta-genethon-solid-bio-team-up-to-fight-dmd/>.
120. Solid Biosciences provides SGT-001 program update. *Solid Biosciences* (19 November 2019); <https://www.solidbio.com/about/media/press-releases/solid-biosciences-provides-sgt-001-program-update>.
121. Solid Biosciences announces FDA lifts clinical hold on IGNITE DMD clinical trial. *Solid Biosciences* (1 October 2020); <https://www.solidbio.com/about/media/press-releases/solid-biosciences-announces-fda-lifts-clinical-hold-on-ignite-dmd-clinical-trial>.
122. Solid Biosciences reports fourth quarter and full-year 2021 financial results and 2-year efficacy and safety data from the ongoing phase I/II IGNITE DMD clinical trial of SGT-001. *Solid Biosciences* (14 March 2022); <https://www.solidbio.com/about/media/press-releases/solid-biosciences-reports-fourth-quarter-and-full-year-2021-financial-results-and-2-year-efficacy-and-safety-data-from-the-ongoing-phase-i-ii-ignite-dmd-clinical-trial-of-sgt-001>.
123. High-dose AAV gene therapy deaths. *Nat. Biotechnol.* **38**, 910 (2020).
124. Lysogene confirms child's death in phase II/III gene therapy trial. *GEN* (26 October 2020); <https://www.genengnews.com/news/lysogene-confirms-childs-death-in-phase-ii-iii-gene-therapy-trial/>.
125. Reuters. Novartis reports Zolgensma caused two deaths from liver failure. *Reuters* (11 August 2022); <https://www.reuters.com/business/healthcare-pharmaceuticals/novartis-reports-zolgensma-caused-two-deaths-liver-failure-2022-08-11/>.
126. Hinderer, C. et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. *Hum. Gene Ther.* **29**, 285–298 (2018).
127. Hale, C. Solid Bio Sees Yet Another Clinical Hold for its DMD Gene Therapy (Fierce Biotech, 2019); <https://www.fiercabiotech.com/biotech/solid-bio-sees-yet-another-clinical-hold-for-its-dmd-gene-therapy>.
128. Jeune, V. L., Joergensen, J. A., Hajjar, R. J. & Weber, T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. *Hum. Gene Ther. Methods* **24**, 59–67 (2013).
129. Mendell, J. R. et al. Dystrophin immunity in Duchenne's muscular dystrophy. *N. Engl. J. Med.* **363**, 1429–1437 (2010).
130. Li, N. et al. The effect of immunomodulatory treatments on anti-Dystrophin immune response after AAV gene therapy in dystrophin deficient mdx mice. *J. Neuromuscul. Dis.* **8**, S325–S340 (2021).
131. Rivera, V. M. et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. *Blood* **105**, 1424–1430 (2005).
132. Penuaud-Budloo, M. et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. *J. Virol.* **82**, 7875–7885 (2008).
133. Le Hir, M. et al. AAV genome loss from dystrophic mouse muscles during AAV-U7 snRNA-mediated exon-skipping therapy. *Mol. Ther.* **21**, 1551–1558 (2013).
134. Das, A. et al. Epigenetic silencing of recombinant adeno-associated virus genomes by NP220 and the HUSH complex. *J. Virol.* **96**, e0203921 (2022).
135. Molland, A. et al. Muscle regeneration affects adeno associated virus 1 mediated transgene transcription. *Sci. Rep.* **12**, 9674 (2022).
136. Morgan, J. E., Hoffman, E. P. & Partridge, T. A. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. *J. Cell Biol.* **111**, 2437–2449 (1990).
137. Partridge, T. A., Morgan, J. E., Coulton, G. R., Hoffman, E. P. & Kunkel, L. M. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. *Nature* **337**, 176–179 (1989).
138. Garcia, S. M. et al. High-yield purification, preservation, and serial transplantation of human satellite cells. *Stem Cell Rep.* **10**, 1160–1174 (2018).
139. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. *Science* **279**, 1528–1530 (1998).
140. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. *Nature* **401**, 390–394 (1999).
141. Cossu, G. et al. Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. *EMBO Mol. Med.* **7**, 1513–1528 (2015).
142. Dellalave, A. et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. *Nat. Cell Biol.* **9**, 255–267 (2007).
143. Torrente, Y. et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. *Cell Transpl.* **16**, 563–577 (2007).
144. Young, C. S. et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. *Cell Stem Cell* **18**, 533–540 (2016).
145. Skuk, D. et al. Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. *J. Neuropathol. Exp. Neurol.* **65**, 371–386 (2006).
146. Motohashi, N., Shimizu-Motohashi, Y., Roberts, T. C. & Aoki, Y. Potential therapies using myogenic stem cells combined with bio-engineering approaches for treatment of muscular dystrophies. *Cells* **8**, 1066 (2019).
147. Skuk, D. & Tremblay, J. P. Myoblast transplantation: the current status of a potential therapeutic tool for myopathies. *J. Muscle Res. Cell Motil.* **24**, 285–300 (2003).
148. Taylor, M. et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. *Neurology* **92**, e866–e878 (2019).
149. McDonald, C. M. et al. Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet* **399**, 1049–1058 (2022).
150. Hanson, B., Wood, M. J. A. & Roberts, T. C. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. *RNA Biol.* **18**, 1048–1062 (2021).
151. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. *Science* **339**, 819–823 (2013).
152. Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. *Science* **351**, 407–411 (2016).
153. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. *Science* **351**, 403–407 (2016).
154. Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. *Science* **351**, 400–403 (2016).
155. Amosai, L. et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. *Sci. Transl. Med.* **9**, eaan8081 (2017).
156. Arnett, A. L. et al. Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells. *Mol. Ther. Methods Clin. Dev.* **1**, 14038 (2014).
157. Nance, M. E. et al. AAV9 edits muscle stem cells in normal and dystrophic adult mice. *Mol. Ther.* **27**, 1568–1585 (2019).
158. Kwon, J. B. et al. In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy. *Mol. Ther. Methods Clin. Dev.* **19**, 320–329 (2020).
159. Ousterout, D. G. et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. *Nat. Commun.* **6**, 6244 (2015).
160. Liao, H.-K. et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. *Cell* **171**, 1495–1507.e15 (2017).
161. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. *Cell* **154**, 442–451 (2013).
162. *To Our Community: An Update On Our CRD-TMH-001 Clinical Trial* (Cure Rare Disease, 2022); <https://www.cureraredisease.org/blog-posts/to-our-community-an-update-on-our-crd-tmh-001-clinical-trial>.
163. Lek, A. et al. Unexpected death of a Duchenne muscular dystrophy patient in an N-of-1 Trial of rAAV9-delivered CRISPR-transactivator. Preprint at <https://doi.org/10.1101/2023.05.1.623289881> (2023).
164. *Pipeline and Progress* (Cure Rare Disease, accessed 2023); https://www.cureraredisease.org/our-approach/pipeline-and-progress#section_1.
165. Hanson, B. et al. Non-uniform dystrophin re-expression after CRISPR-mediated exon excision in the dystrophin/utrophin double-knockout mouse model of DMD. *Mol. Ther. - Nucleic Acids* **30**, 379–397 (2022).
166. Simhadri, V. L. et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. *Mol. Ther. Methods Clin. Dev.* **10**, 105–112 (2018).
167. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. *Nat. Med.* **25**, 249–254 (2019).
168. Wagner, D. L. et al. High prevalence of *Streptococcus pyogenes* Cas9-reactive T cells within the adult human population. *Nat. Med.* **25**, 242–248 (2019).
169. Bengtsson, N. E. et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. *Nat. Commun.* **8**, 14454 (2017).
170. Zhang, Y. et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. *Sci. Adv.* **3**, e1602814 (2017).
171. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. *Nat. Rev. Drug. Discov.* **19**, 839–859 (2020).

172. Xu, L. et al. Efficient precise in vivo base editing in adult dystrophic mice. *Nat. Commun.* **12**, 3719 (2021).

173. Dianov, G. L. & Hübscher, U. Mammalian base excision repair: the forgotten archangel. *Nucleic Acids Res.* **41**, 3483–3490 (2013).

174. Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. *Nat. Biotechnol.* **36**, 536–539 (2018).

175. Chemello, F. et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. *Sci. Adv.* **7**, eabg4910 (2021).

176. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. *Nature* **576**, 149–157 (2019).

177. Blake, D. J., Tinsley, J. M. & Davies, K. E. Utrophin: a structural and functional comparison to dystrophin. *Brain Pathol.* **6**, 37–47 (1996).

178. Tinsley, J. M. et al. Primary structure of dystrophin-related protein. *Nature* **360**, 591–593 (1992).

179. Love, D. R. et al. An autosomal transcript in skeletal muscle with homology to dystrophin. *Nature* **339**, 55–58 (1989).

180. Anthony, K. et al. Biochemical characterization of patients with in-frame or out-of-frame DMD deletions pertinent to exon 44 or 45 skipping. *JAMA Neurol.* **71**, 32–40 (2014).

181. Matsumura, K., Ervasti, J. M., Ohlendieck, K., Kahl, S. D. & Campbell, K. P. Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. *Nature* **360**, 588–591 (1992).

182. Deconinck, A. E. et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. *Cell* **90**, 717–727 (1997).

183. Grady, R. M. et al. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. *Cell* **90**, 729–738 (1997).

184. Tinsley, J. M. et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. *Nat. Med.* **4**, 1441–1444 (1998).

185. Squire, S. et al. Prevention of pathology in mdx mice by expression of utrophin: analysis using an inducible transgenic expression system. *Hum. Mol. Genet.* **11**, 3333–3344 (2002).

186. Fisher, R. et al. Non-toxic ubiquitous over-expression of utrophin in the mdx mouse. *Neuromuscul. Disord.* **11**, 713–721 (2001).

187. Song, Y. et al. Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. *Nat. Med.* **25**, 1505–1511 (2019).

188. Chancellor, D. R. et al. Discovery of 2-arylbenzoxazoles as upregulators of utrophin production for the treatment of Duchenne muscular dystrophy. *J. Med. Chem.* **54**, 3241–3250 (2011).

189. Tinsley, J. M. et al. Daily treatment with SMTC1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. *PLoS ONE* **6**, e19189 (2011).

190. Muntoni, F. et al. A phase 1b trial to assess the pharmacokinetics of eztromod in pediatric Duchenne muscular dystrophy patients on a balanced diet. *Clin. Pharmacol. Drug Dev.* **8**, 922–933 (2019).

191. Wilkinson, I. V. L. et al. Chemical proteomics and phenotypic profiling identifies the aryl hydrocarbon receptor as a molecular target of the utrophin modulator eztromod. *Angew. Chem. Int. Ed.* **59**, 2420–2428 (2020).

192. Guiraud, S. et al. Second-generation compound for the modulation of utrophin in the therapy of DMD. *Hum. Mol. Genet.* **24**, 4212–4224 (2015).

193. Tinsley, J. M. et al. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. *Nature* **384**, 349–353 (1996).

194. Deconinck, N. et al. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. *Nat. Med.* **3**, 1216–1221 (1997).

195. Odom, G. L., Gregorevic, P., Allen, J. M., Finn, E. & Chamberlain, J. S. Microtrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice. *Mol. Ther.* **16**, 1539–1545 (2008).

196. Sengupta, K. et al. Genome editing-mediated utrophin upregulation in Duchenne muscular dystrophy stem cells. *Mol. Ther. Nucleic Acids* **22**, 500–509 (2020).

197. Pisani, C. et al. Utrophin up-regulation by artificial transcription factors induces muscle rescue and impacts the neuromuscular junction in mdx mice. *Biochim. Biophys. Acta Mol. Basis Dis.* **1864**, 1172–1182 (2018).

198. Li, D. et al. Sarcolemmal nNOS anchoring reveals a qualitative difference between dystrophin and utrophin. *J. Cell Sci.* **123**, 2008–2013 (2010).

199. Belanto, J. J. et al. Microtrophin binding distinguishes dystrophin from utrophin. *Proc. Natl. Acad. Sci. USA* **111**, 5723–5728 (2014).

200. Markati, T., De Waele, L., Schara-Schmidt, U. & Servais, L. Lessons learned from discontinued clinical developments in Duchenne muscular dystrophy. *Front. Pharmacol.* **12**, 735912 (2021).

201. Markati, T. et al. Emerging therapies for Duchenne muscular dystrophy. *Lancet Neurol.* **21**, 814–829 (2022).

202. *Italfarmaco Group Announces Positive Topline Data From Phase 3 Trial Showing Beneficial Effect Of Givinostat In Patients With Duchenne Muscular Dystrophy* (Businesswire, 2022); <https://www.businesswire.com/news/home/20220625005001/en/Italfarmaco-Group-Announces-Positive-Topline-Data-from-Phase-3-Trial-Showing-Beneficial-Effect-of-Givinostat-in-Patients-with-Duchenne-Muscular-Dystrophy>.

203. Colussi, C. et al. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. *Proc. Natl. Acad. Sci. USA* **105**, 19183–19187 (2008).

204. Bettica, P. et al. Histological effects of givinostat in boys with Duchenne muscular dystrophy. *Neuromuscul. Disord.* **26**, 643–649 (2016).

205. Webster, C., Silberstein, L., Hays, A. P. & Blau, H. M. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. *Cell* **52**, 503–513 (1988).

206. Petrof, B. J. et al. Adaptations in myosin heavy chain expression and contractile function in dystrophic mouse diaphragm. *Am. J. Physiol.* **265**, C834–C841 (1993).

207. Oldfors, A. Hereditary myosin myopathies. *Neuromuscul. Disord.* **17**, 355–367 (2007).

208. *Clinical Trials* (Edgeweave, accessed 2023); <https://edgeweave.com/clinical-trials>.

209. Cordova, G., Negroni, E., Cabello-Verrugio, C., Mouly, V. & Trollet, C. Combined therapies for Duchenne muscular dystrophy to optimize treatment efficacy. *Front. Genet.* **9**, 114 (2018).

210. Verhaert, I. E. C. et al. Prednisolone treatment does not interfere with 2'-O-methyl phosphorothioate antisense-mediated exon skipping in Duchenne muscular dystrophy. *Hum. Gene Ther.* **23**, 262–273 (2012).

211. Peccate, C. et al. Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles. *Hum. Mol. Genet.* **25**, 3555–3563 (2016).

212. Kendall, G. C. et al. Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. *Sci. Transl. Med.* **4**, 164ra160 (2012).

213. Bizot, F. et al. Histone deacetylase inhibitors improve antisense-mediated exon-skipping efficacy in mdx mice. *Mol. Ther. Nucleic Acids* **30**, 606–620 (2022).

214. Guiraud, S. et al. The potential of utrophin and dystrophin combination therapies for Duchenne muscular dystrophy. *Hum. Mol. Genet.* **28**, 2189–2200 (2019).

215. Hayashita-Kinoh, H. et al. Improved transduction of canine X-linked muscular dystrophy with rAAV9-microdystrophin via multipotent MSC pretreatment. *Mol. Ther. Methods Clin. Dev.* **20**, 133–141 (2021).

216. Roberts, T. C. The microRNA machinery. *Adv. Exp. Med. Biol.* **887**, 15–30 (2015).

217. Greco, S. et al. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. *FASEB J.* **23**, 3335–3346 (2009).

218. Roberts, T. C. et al. Expression analysis in multiple muscle groups and serum reveals complexity in the microRNA transcriptome of the mdx mouse with implications for therapy. *Mol. Ther. Nucleic Acids* **1**, e39 (2012).

219. Caccharelli, D. et al. miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. *EMBO Rep.* **12**, 136–141 (2011).

220. Fiorillo, A. A. et al. TNF- α -induced microRNAs control dystrophin expression in becker muscular dystrophy. *Cell Rep.* **12**, 1678–1690 (2015).

221. Basu, U. et al. Translational regulation of utrophin by miRNAs. *PLoS ONE* **6**, e29376 (2011).

222. Mishra, M. K., Loro, E., Sengupta, K., Wilton, S. D. & Khurana, T. S. Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction. *PLoS ONE* **12**, e0182676 (2017).

223. Abmayr, S., Gregorevic, P., Allen, J. M. & Chamberlain, J. S. Phenotypic improvement of dystrophic muscles by rAAV/microdystrophin vectors is augmented by Igf1 codelivery. *Mol. Ther.* **12**, 441–450 (2005).

224. Dumonceaux, J. et al. Combination of myostatin pathway interference and dystrophin rescue enhances tetanic and specific force in dystrophic mdx mice. *Mol. Ther.* **18**, 881–887 (2010).

225. Malafera, A. et al. Dual myostatin and dystrophin exon skipping by morpholino nucleic acid oligomers conjugated to a cell-penetrating peptide is a promising therapeutic strategy for the treatment of Duchenne muscular dystrophy. *Mol. Ther. Nucleic Acids* **1**, e62 (2012).

226. Rodino-Klapac, L. R. et al. Micro-dystrophin and follistatin co-delivery restores muscle function in aged DMD model. *Hum. Mol. Genet.* **22**, 4929–4937 (2013).

227. Mariot, V. et al. Downregulation of myostatin pathway in neuromuscular diseases may explain challenges of anti-myostatin therapeutic approaches. *Nat. Commun.* **8**, 1859 (2017).

228. Godfrey, C. et al. How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse. *Hum. Mol. Genet.* **24**, 4225–4237 (2015).

229. van den Bergen, J. C. et al. Dystrophin levels and clinical severity in Becker muscular dystrophy patients. *J. Neurol. Neurosurg. Psychiatry* **85**, 747–753 (2014).

230. Hoffman, E. P. et al. Improved diagnosis of Becker muscular dystrophy by dystrophin testing. *Neurology* **39**, 1011–1017 (1989).

231. van Westering, T. L. E. et al. Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology. *J. Cachexia Sarcopenia Muscle* **11**, 578–593 (2020).

232. Chwalewka, K. et al. Exon skipping induces uniform dystrophin rescue with dose-dependent restoration of serum miRNA biomarkers and muscle biophysical properties. *Mol. Ther. Nucleic Acids* **29**, 955–968 (2022).

233. Dangouloff, T. & Servais, L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. *Ther. Clin. Risk Manag.* **15**, 1153–1161 (2019).

234. Thomas, S. et al. Time to diagnosis of Duchenne muscular dystrophy remains unchanged: findings from the Muscular Dystrophy Surveillance, Tracking, and Research Network, 2000–2015. *Muscle Nerve* **66**, 193–197 (2022).

Author contributions

The manuscript was conceived by K.E.D. and T.C.R. The first draft was written by T.C.R. All authors researched data for the article. All authors contributed substantially to discussion of the content and edited the manuscript before submission.

Competing interests

K.E.D. is a member of the scientific advisory board of Sarepta Therapeutics. M.J.A.W. is an adviser and shareholder in PepGen Ltd and Evox Therapeutics. T.C.R. declares no financial competing interests.

Additional information

Peer review information *Nature Reviews Drug Discovery* thanks Alessandra Ferlini, Oxana Ibraghimov-Beskrovnaia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

© Springer Nature Limited 2023