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Abstract
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Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting
disorder and a priority candidate for molecular and cellular therapeutics.
Althoughrare, itis the most common inherited myopathy affecting
children and so has been the focus of intense research activity. It is
caused by mutations that disrupt production of the dystrophin protein,
and a plethora of drug development approaches are under way that

aim to restore dystrophin function, including exon skipping, stop
codonreadthrough, gene replacement, cell therapy and gene editing.
These efforts have led to the clinical approval of four exon skipping
antisense oligonucleotides, one stop codonreadthrough drug and

one gene therapy product, with other approvals likely soon. Here,

we discuss the latest therapeutic strategies that are under development
and being deployed to treat DMD. Lessons from these drug development
programmes are likely to have amajor impact on the DMD field, but
alsoon molecular and cellular medicine more generally. Thus, DMD is
apioneer disease at the forefront of future drug discovery efforts, with
these experimental treatments paving the way for therapies using similar
mechanisms of action being developed for other genetic diseases.
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Introduction

Duchenne muscular dystrophy (DMD) is a genetic muscle-wasting
disease and the most common inherited paediatric myopathy, affect-
ing1in 3,500-5,000 live male births'. It is characterized by progres-
sive muscle weakness and loss of ambulation around age 10 years,
and is ultimately fatal owing to cardiorespiratory failure around age
30 years®™*. In addition to muscle wasting, commonly observed clini-
cal features of the disease include scoliosis, joint contractures and
calf pseudohypertrophy’. DMD is caused by mutations that disrupt
production of the dystrophin protein and therefore sensitize muscle
to contraction-induced damage®.

Standard of care for patients with DMD is corticosteroid therapy
(for example, prednisone or deflazacort), which has demonstrated
some limited efficacy in terms of prolonging ambulation and delay-
ing disease progression”® through an anti-inflammatory mechanism.
Importantly, long-term steroid use is associated with undesirable
side effects including Cushingoid symptoms, weight gain, growth
delay, behavioural changes and osteoporosis’. The latter is particularly
concerning because accidental fractures in patients with DMD often
lead to a permanent loss of ambulation'. Efforts to develop corticos-
teroid treatments for DMD withimproved side effect profiles (such as
vamorolone)" have been discussed in detail elsewhere’.

Newer DMD therapeutic approaches have focused on restoring
dystrophin expression using multiple modalities. Drugs that restore
the dystrophin reading frame via antisense oligonucleotide (ASO)-
mediated exon skipping, stop codon readthrough and gene replace-
ment have achieved regulatory approval for clinical use. Although these
are major achievements for the DMD research and patient communi-
ties, the efficacy of these drugsis generally accepted to be very low. Var-
ious efforts are under way to enhance delivery of exon skipping drugs
vianovel chemical modifications and conjugation to delivery-assisting
moieties. Conversely, multiple additional genereplacement therapies,
comprised of viral vector-encoded compact dystrophin variants, are
in late-stage clinical trials. Other therapeutic strategies, including
cell therapy, gene editing, upregulation of compensatory genes such
as utrophin and combination therapies, are also under investigation.

DMDisakey disease indicationinthe field of experimental thera-
peutics for several reasons: it constitutes an unmet clinical need with
devastating disease progression; it has arelatively highincidence fora
rare disease; a plethora of molecular and cellular medicines are being
investigated for its treatment; and there have been multiple recent
regulatory approvals. Advances in DMD therapeutics will undoubtedly
have an impact on the development of therapeutics in other areas of
medicine, as similar modalities canbe applied to other disease indica-
tions. Here, we discuss the drug development landscape for DMD with
amainfocusondystrophinrestorationtherapies, although other strat-
egies are considered briefly. Recent drug approvals, progress in cur-
rent clinical trials,improved delivery technologies, vector-associated
safety issues, combination therapies and other novel approaches are
discussed.

DMD genetics and pathophysiology

DMD is an X-linked recessive dystrophinopathy, caused by genetic
absence of the dystrophin protein, which is encoded by the DMD
gene at Xp2l. Dystrophin is located at the intracellular surface
of the sarcolemma, where it acts as an organizing centre for the
dystrophin-associated protein complex (DAPC). Specifically, dys-
trophin binds to the transmembrane protein 3-dystroglycan via
its C-terminal cysteine-rich domain™. B-Dystroglycan binds to

a-dystroglycan, which is exposed on the extracellular surface of the
sarcolemma where it interacts with a complex of laminins. Dystro-
phinalsobindsto filamentous y-actin, intermediate filaments and the
microtubule network in the sarcoplasm viaits N terminus. As such, it
formsamechanical link between the extracellular matrix and the actin
cytoskeleton®. The primary function of dystrophinisto serve asa‘shock
absorber’ that protects muscle from contractile damage®. Additionally,
itisinvolved in multiple signalling processes via DAPC interactions,
including nitric oxide (NO) signalling via the activity of neuronal nitric
oxide synthase (nNOS), the MAP kinase pathway' and MARK2 kinase
signalling, which regulates muscle satellite (stem) cell polarity®.

The loss of dystrophin results in disruption of the DAPC, and
therefore many DAPC components become mislocalized from the
sarcolemma' and are expressed at lower levels'®". For example, the sar-
coglycans are downregulated and mislocalized in dystrophin-deficient
muscle'®”. Disruption of sarcoglycansis associated with various forms
of limb-girdle muscular dystrophy’, indicating that integrity of the
DAPC is important for preventing muscle pathology. Dystrophin
loss also leads to increased Ca*" influx, oxidative stress and myone-
crosis. Dystrophic muscle is characterized by foci of degeneration
and regeneration and by persistent inflammation. During the early
stages of disease, myofibre loss is balanced by compensatory regen-
erationdriven primarily by satellite cells. In advanced disease, muscle
quality declines as a consequence of extensive fibrosis and deposi-
tion of adipose tissue’, which progressively replaces myofibres and
generates a non-productive environment that is unable to support
satellite cell-mediated regeneration (that is, functional exhaustion).
Importantly, evidence suggests that the number of satellite cells is
not reduced in dystrophic muscle and their regenerative potential
is not diminished***.

Aside from the structural and signalling functions described
above, there is also evidence that dystrophin functions as a tumour
suppressor in cancers that involve myogenic programmes (that is,
rhabdomyosarcoma, gastrointestinal stromal tumour and leiomyosar-
coma)®and in other cancers such as neuroblastoma®. Somatic muta-
tions in the DMD gene are common in high-grade myogenic cancers®.
Cell culture experiments demonstrated that dystrophinre-expression
can reduce cell migration, invasion and anchorage independence in
myogenic sarcomas, suggesting that loss of dystrophin expression
promotes metastasis.

The genomic locus encoding the DMD gene is one of the largest
in the human genome (-2.2 Mb) and exhibits a high rate of de novo
mutation. Common types of DMD-causing mutation include whole
exon deletions (68%), exon duplications (11%) and nonsense mutations
(10%)**?. Although mutations can occur throughout the genomic
region, large deletions (and some duplications) are concentrated at two
hotspotslocated at exons 3-19 and exons 45-55 (ref. 28). The DMD gene
consists of 79 exons (Fig. 1a), many of which code for 24 spectrin-like
repeat domains in the central rod domain of dystrophin. There is a
degree of functional redundancy in these domains, meaning that in
many cases they are dispensable for dystrophin function (Fig. 1b).
Importantly, whole exon deletions that do not disrupt the translation
reading frame lead to aninternally deleted dystrophin protein, which
retains partial functionality and is associated with Becker muscular
dystrophy (BMD), arelated dystrophinopathy?’~**, Patients with BMD
present with awide range of disease severities, although disease onset
istypically later and pathology is relatively mild compared with DMD.
Life expectancy is longer than for DMD, with dilated cardiomyopathy
typically appearing in the fourth decade of life****. However, in some
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Fig.1|The dystrophin gene and protein. a, Schematic of the DMD gene. The
colour of each exon represents the protein domain it encodes: the actin binding
domain (ABD) in orange, the hinge regions in black, the central rod domainin
blue, the cysteine-rich region (CR) in purple and the C-terminal domain (CT)
ingreen. Exon shapes indicate how the triplet base code is distributed across the
exons, such that they fit together to generate an in-frame mature DMD transcript.

The locations of the transcription start sites for the various dystrophin protein
isoforms are indicated by arrows. b, Structure of the full-length muscle isoform
of dystrophin (Dp427m). Key interactions between dystrophin and other binding
partners areindicated. CNS, central nervous system; UTR, untranslated region.
Adapted fromref. 5, Springer Nature Limited.

cases dilated cardiomyopathy can be the initial presentation of
BMD in younger patients®. Patients with BMD generate dystrophin
protein at lower levels than in the case of DMD and/or produce a par-
tially functional dystrophin on account of varying degrees of internal
in-frame deletion®. In rare cases, some patients with BMD with large
internal dystrophin deletions are effectively asymptomatic***°. These
observations motivated the development of therapeutic dystrophin
restoration strategies that aimto convert the severe DMD phenotype
into the milder BMD situation®®.

Dystrophin restoration strategies

Loss of dystrophinis the primary genetic cause of DMD, and so extensive
research effort has been directed towards therapies that can restore
dystrophin expression. A plethora of approaches have been tested,
including splice correction (exon skipping) to restore the translation
reading frame, stop codon readthrough for patients with nonsense
mutations, gene replacement with internally deleted dystrophin
transgenes, delivery of dystrophin-expressing myogenic cells and
gene editing to repair the DMD locus at the DNA level.

Exon skipping

The leading dystrophin restoration strategy is currently exon skip-
ping, whereby modulation of splicing is used to restore the translation
reading frame and promote the generation of a partially functional,
internally deleted pseudo-dystrophin protein (Fig. 2). Typically, this
isachieved using stericblock ASOs. These short (~-20-30 nucleotide),
single-stranded nucleic acid polymers interact with pre-mRNA tran-
scripts via Watson-Crick base pairing and thereby influence splicing
decisions by physically masking specific splicing signals, whichinclude
exon splicing enhancers and exon recognition sequences. Exon skip-
ping ASOs must each be designed to target asingle specific exon,and so
anindividual drug canonly ever be capable of treating the limited num-
ber of patients for which a given exon skip will restore the translation
reading frame. Importantly, many DMD-causing mutations cannot be
treated with exon skipping approaches owingto certainregions of the
dystrophin protein (and their encoding exons) being indispensable for
function, or the absence of suitable mutation-adjacent exons that can
beskippedinordertoreframethe transcript. It hasbeen estimated that
exon skipping approaches might be applicable to 55% of DMD-causing
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Fig.2|Restoration of dystrophin expression by exon skipping. a, Ina healthy
individual, the DMD gene undergoes splicing to excise intronic regions from the
mature DMD mRNA transcript. A functional dystrophin protein is generated via
the translation of this transcript. The schematic shows a region of the DMD gene
covering exons 48-53, which encodes spectrin-like repeat domains (blue) and a
hinge region (H3, in black). b, Inindividuals with DMD, mutations (often whole
exon deletions) disrupt the translation reading frame of the DMD transcript.
Here, arelatively common DMD-causing mutation is shown, in which exon 52
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is deleted. As aresult, exons 51and 53 are out of frame, leading to a failure to
generate dystrophin protein. Out-of-frame exons are shownin grey. ¢, Treatment
withan antisense oligonucleotide (ASO) targeting an exon splicing enhancer
motifin DMD exon 51induces skipping of this exon by effectively hiding it from
the spliceosome. As aresult, exon 50 and exon 53 are spliced together, resulting
inrestoration of the dystrophin translation reading frame. Following translation,
aninternally truncated pseudo-dystrophin lacking the H3 domain is generated
thatretains a degree of functionality.

mutations and 80% of DMD-causing deletions®. These approaches have
primarily been used for patients who carry whole exon deletions but
can also be used for nonsense mutations, provided that these muta-
tions occur within exons that can be skipped without disrupting the
translation reading frame. For example, the commonly used mdx mouse
model of DMD carries apremature termination codonin Dmd exon 23,
andrestoration of dystrophin expression can be achieved by skipping
the mutation-containing exon. Exon skipping approaches canalsobe
applied tosometypes of exon duplication, such as duplication of DMD
exon 2, discussed below.

Initial efforts focused on skipping of exon 51, which would be appli-
cable to-~13% of all patients with DMD?® (such as those with whole exon
deletions of DMD exon 50 or 52). The great promise of oligonucleotide
therapeutics is that upon establishing platform chemistries and deliv-
ery strategies, novel drugs can be rapidly generated by the careful
alteration of the constituent nucleotide sequence to target a different
transcript. In the case of DMD, modification of ASO sequences can be
deployed to target a wider range of DMD-causing mutations. So far,
there are four US Food and Drug Administration (FDA)-approved ASO
drugs designed to skip various DMD exons (Table 1and Fig. 3a). These
ASOsareall phosphorodiamidate morpholino oligonucleotides (PMOs)
(Fig.3b) developed by Sarepta Therapeutics (eteplirsen®, golodirsen®
and casimersen®) or NS Pharma (viltolarsen*®~*?). They target the exons
that have the potential to treat the largest number of patients — that s,
exons 45, 51 and 53. Both Sarepta and NS Pharma have pipelines with
ASOs that target the skipping of additional exons (43,44, 50,52 and 55),
although many of these programmes are still at the preclinical stage.
Importantly, not all DMD-causing mutations are treatable with exon
skipping approaches®. As the FDA has not approved exon skipping as
aclassof drugbut hasinstead required separate trials for each ASO, the
targeting of rare mutations is unlikely to be sufficiently commercially
attractive for development by the pharmaceutical industry.

Notably, the European Medicines Agency has declined to
approve any of the exon skipping compounds described above*,

based primarily on their low efficacy, marginal therapeutic benefit
and smalltrial sample sizes. Indeed, the approval of eteplirsen by the
FDA was particularly controversial, leading to accusations of ‘rail-
roading at the FDA’ and the resignations of several FDA review team
members**~**, Mean dystrophin protein expression after 180 weeks
of eteplirsentreatment was determined to be less than1% of healthy
dystrophin levels*. The efficacies of viltolarsen, golodirsen and
casimersen are similarly modest®**°°, Nevertheless, PMOs have
been remarkably safe in clinical trials®***, and doses of up to 3 g kg™
are well tolerated in mice®’. Despite the low levels of dystrophin pro-
teinrestored by these compounds, clinical trial participants treated
with eteplirsen (the most studied exon skipping drug for DMD) have
maintained an attenuation in ambulatory decline over a treatment
period of atleast 4 years*, which is not consistent with the established
progression of the disease.

Importantly, the four FDA approvals of PMO exon skipping
drugs have not discouraged other companies from entering this
space with enhanced chemistries and/or delivery technologies.
The low efficacy of ‘naked’ PMO exon skipping drugs has motivated the
development of improved delivery strategies, primarily based on
bioconjugation®. The backbone linkages of PMOs are uncharged
(unlike most oligonucleotide therapeutics), which permits facile
covalent conjugation to cell-penetrating peptides (CPPs). These are
typically arginine-containing short peptides that facilitate interac-
tion with the outer surface of the plasma membrane and glycoca-
lyx, and which might to some extent promote endosomal escape.
Theresulting peptide-PMO (PPMO) conjugates offer major increases
in potency in preclinical DMD models compared with unconjugated,
naked PMO’**". PPMO conjugates are currently under investigationin
two clinical programmes (Table1). First, Sareptais conductingaphasell
trial (NCT04004065, MOMENTUM) of vesleteplirsen (SRP-5051), which
consists of the exon 51-targeting eteplirsen PMO sequence conjugated
to the arginine-rich R¢Gly peptide (Fig. 3c). Preliminary unpublished
datareported by Sarepta suggest that vesleteplirsen exhibits greater
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drug exposure and exon skipping activity than eteplirsen at equiva-
lent doses (>10% mean exon skipping, >6% dystrophin expression
after treatment with 30 mg kg™ per month for 3 months)*®. Secondly,
PepGen has conducted a phase clinical trial of PGN-EDOS51in healthy
volunteersin Canada, based on novel PPMO technology developed by
the Wood and Gait groups. These conjugates were designed to balance
exon skipping activity with renal toxicity, which has been reported to
be a potential limitation of PPMO technologies**“°. PepGen reported
that PGN-EDOS51 was safe and well-tolerated in healthy volunteers, with
dystrophin exon skipping observed at low levels (2% mean exon skip-
ping, assayed 28 days after injection), whichwas expected considering
the relatively low dose (a single intravenous 15 mg kg™ dose)®’. Both
companies reported cases of hypomagnesaemia after PPMO treatment,
which required magnesium supplementation in some cases.

Entrada Therapeutics is developing PPMO exon skipping conju-
gates based on cyclic peptides using an enhanced endosomal escape
vehicle (EEV) technology and is currently at the preclinical stage®.

Other ASO conjugation approaches are also under investigation.
Avidity Biosciences is exploring an antibody-oligonucleotide conju-
gate approach (Fig. 3d), with the leading compound AOC 1044, tar-
geting DMD exon 44 skipping, being investigated in the EXPLORE44
phase I/l clinical trial in healthy volunteers®’. AOC 1044 consists of
PMO molecules conjugated to an antibody targeting the transferrin
receptor (TFRC, TfR1), whichis highly expressed in skeletal and cardiac
muscle. Similarly, Dyne Therapeutics is undertaking a first-in-human
phasel/ll clinical trial of DYNE-251, targeting skipping of DMD exon 51
inamenable patients with DMD (NCT05524883). DYNE-251 consists of
PMO molecules conjugated to a Fab fragment (Fig. 3e) also targeting
TFRC. Dyne recently published preclinical exon skipping data in the
mdx mouse using its FORCE platform®*.

The prospect of multi-exon skipping using a cocktail of ten octa-
guanidine dendrimer-conjugated PMOs (vivo-morpholinos) has been
explored in a DMD mouse model lacking Dmd exon 52 (the mdx52
mouse)®. Skipping of ten ‘hot-spot’ exons (Dmd exons 45-55) resulted
in restoration of dystrophin expression and improvements in mus-
cle function, although several skipped products were produced®.
Importantly, skipping of these hot-spot exons would theoretically

be applicable to ~63% of all patients with DMD®. Whether such an
approach can be translated for use in human patients remains to be
demonstrated, as overall such multi-exon skipping strategies have
thus far proved only minimally successful.

Wave Life Sciences recently initiated testing of an ASO designed to
skip DMD exon 53 (WVE-N531) inaphase Ib/ll clinical trialin15boys with
DMD (NCT04906460). According to newsreports, preliminary results
from this trial after 6 weeks of treatment indicated substantial RNA
level exon skipping, although dystrophin protein was below the lower
limit of quantification®”. WVE-N531is a chimeric stereopure steric block
ASO that contains phosphorothioate (PS) and phosphoryl guanidine
(PN) linkages, which reduce the overall charge of the oligonucleotide®®
(Fig. 3f-j). This drug also includes stereospecific linkages at one or
more backbonelinkages (both PS and PN linkages are chiral, unlike the
analogous phosphodiester, PO, linkage) (Fig. 3i,j). Control of backbone
linkage stereochemistry caninfluence amultitude of oligonucleotide
properties, including hydrophobicity, nuclease resistance, target
binding affinity and splice-switching activity®’. The notion that control
of stereochemistry could be used to optimize ASO development is
appealing, as ASOs with chiral centres in their backbone (which s the
vast majority) in reality constitute racemic mixtures of hundreds of
thousands of different molecules. Amongthis population there might
be hyperfunctional molecules that could be synthesized inastereopure
manner, thereby offering a substantial increase in potency. However,
theimportance of stereopure ASO backbone linkages has also met with
scepticism fromsome others in the oligonucleotide field’°. Beneficial
outcomesthatare obtainedin certain properties (such astarget bind-
ing) might be counteracted by detrimental changes in other properties
(suchas uptake efficiency). Notably, Wave Life Sciences has had several
failures of its stereopure ASO technologies for both its DMD and its
Huntington disease programmes’’?. Demonstration of efficacy for
WVE-N531will beimportant to support the continuation of stereopure
ASO technology development.

DaiichiSankyoisinvestigating renadirsen (DS-5141b) in a phase I
trialin eight participants (NCT04433234). Renadirsenis a‘mixmer’ ASO
consisting of 2’-O-Methyl and ethylene-bridged nucleic acid (ENA) resi-
dueswithPSlinkages (Fig.3g k,|) designed to skip DMD exon 45 (ref.73).

Table 1| Exon skipping drugs approved and in clinical development

Name Company Chemistry Target exon Approval or clinical stage
Eteplirsen Sarepta Therapeutics PMO 51 FDA

Viltolarsen NS Pharma PMO 53 FDA, Japan
Golodirsen Sarepta Therapeutics PMO 53 FDA

Casimersen Sarepta Therapeutics PMO 45 FDA
Vesleteplirsen Sarepta Therapeutics PPMO (RsGly) 51 Phase Il

WVE-N531 Wave Life Sciences PS/PN stereoselective 53 Phase Ib/Il
Renadirsen Daiichi Sankyo 2'0OMe/ENA mixmer 45 Phase Il

AOC 1044 Avidity Biosciences PMO-antibody conjugate 44 Phase /Il
DYNE-251 Dyne Therapeutics PMO-Fab fragment conjugate 51 Phase I/Il
ENTR-601-44 Entrada Therapeutics PPMO (EEV) 44 Preclinical
PGN-EDO51 PepGen PPMO (EDO) 51 Phase |

SQY51 SQY Therapeutics Tricylco-DNA 51 Phase I/l (in 2023)

EDO, enhanced delivery oligonucleotide; EEV, enhanced endosomal escape vehicle; ENA, ethylene-bridged nucleic acid; PMO, phosphorodiamidate morpholino oligonucleotide; PPMO,

peptide-PMO conjugate; PS/PN, phosphorothioate and phosphoryl guanidine linkages.
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Fig.3| Antisense oligonucleotide therapies for Duchenne muscular
dystrophy. a, Chemical composition of the FDA-approved exon skipping
phosphorodiamidate morpholino oligonucleotide (PMO) compounds
eteplirsen, golodirsen, casimersen and viltolarsen. b, Chemical structure

of PMO chemiistry. ¢, The peptide-PMO (PPMO) conjugate vesleteplirsen.

d, Anantibody-PMO conjugate developed by Avidity Biosciences, witha PMO
molecule conjugated to an antibody targeting the transferrin receptor TFRC.

e, AFab fragment-PMO conjugate developed by Dyne Therapeutics, witha PMO
conjugated to a Fab targeting TFRC. f, Chemical composition of a stereopure

antisense oligonucleotide (ASO) targeting mouse Dmd exon 23 (Wave Life
Sciences). This compound also includes phosphodiester (PO) linkages and is
chemically similar to WVE-N531 (exact composition not publicly disclosed).

g, Phosphorothioate 2’-0-methyl RNA (PS 2’-O-Methyl). h, Phosphorothioate
2’-fluoro RNA (PS 2’-F). i, Rp and Sp stereoisomers of PS linkages. j, Rp and Sp
stereoisomers of phosphoryl guanidine (PN) linkages. k, Chemical composition
of renadirsen. 1, Phosphorothioate 2’-0,4’-C-ethylene-bridged nucleic acid
(PSENA). m, Tricyclo-DNA. The IgG (1IGY) and Fab fragment (5FUZ) structures
were downloaded from the Protein Data Bank.

Also, SQY Therapeutics is developing tricyclo-DNA (Fig. 3m), an ASO
chemistry that exhibits limited activity for dystrophin restoration in
thebrain’”, and it hasinitiated aphaseI/ll clinical trial (Avance 1) that
isexpected to be completed in mid-2024.

An alternative strategy is to use expressed exon skipping trig-
gersbased onthe Ul or U7 small nuclear RNAs (snRNAs), whichcanbe
delivered viaadeno-associated virus (AAV) vectors to enable systemic
delivery throughout the musculature’””. Suchanapproachis currently
under investigation in a phase I/1l clinical trial (NCT04240314) spon-
sored by Nationwide Children’s Hospital, USA, that aims to induce exon
skipping of a duplicated DMD exon 2, the most commonly observed
DMD-causing exon duplication®. The experimental therapeuticin this
case (scAAV9.U7-ACCA) is a self-complementary AAV9 encoding four
U7 snRNA exon skipping transgene cassettes, two targeting the exon 2
splice acceptor and two the splice donor’®. This approach is notable
because exon skipping results in two possible beneficial splicing out-
comes. In the first outcome, skipping of one copy of DMD exon 2 will
generate full-length dystrophin and be a significant advantage over
otherapproachesthatrestoreinternally deleted pseudo-dystrophins.
In the second outcome, skipping of both copies of DMD exon 2 will
resultin cap-independent translation driven by an internal ribosome
entry site (IRES) sequence located in exon 5, which generates a highly
functional N-terminally truncated dystrophin isoform”. Evidence
from preclinical studies suggests that the second splicing outcome is
dominant’®, Preliminary unpublished findings from investigationsin
three patients with DMD are promising®°.

Stop codonreadthrough

Nonsense mutations in the DMD gene resultinthe generation of trun-
cated protein products and/or promote reductionsin mRNA levels via
the nonsense-mediated decay (NMD) pathway. Stop codon readthrough
therapies have therefore been developed that aim to promote ribo-
some miscoding of premature termination codons (PTCs) such thatan
alternative aminoacidisincorporated and translation of the mRNA con-
tinues past the PTCinstead of translation termination occurring. Stop
codon readthrough approaches in the context of DMD are therefore
expected to generate full-length dystrophin protein, albeit with asingle
internal amino acid change (Fig. 4a,b). Importantly, such stop codon
readthrough therapies are suitable for the treatment of patients with
single nonsense mutations (but not for patients in which a frameshift
mutation generates PTCs downstream of the mutation). Early work
focused onthe use of gentamicin (Fig. 4c), anaminoglycoside antibiotic
that binds in the aminoacyl-tRNA acceptor (A) site of the ribosome
and interferes with codon-anticodon recognition. Gentamicin treat-
ment showed some promise in preclinical studies®, although results
in clinical trials were less impressive® ‘. Notably, aminoglycosides are
associated with renal and otic toxicities®, and clinical development of
gentamicin was ultimately terminated.

PTC Therapeutics has developed an improved stop codon
readthrough compound, ataluren (PTC124; Translarna). Ataluren is
an orally bioavailable small molecule (3,5-diaryl oxadiazole, Fig. 4d)
that has no structural similarity to aminoglycoside antibiotics, exhibits
no antibiotic activity, does not influence NMD target expression and
promotes readthrough of PTCs while not affecting normal termination
codons®. In July 2014 ataluren was granted conditional approval by
the EMA¥ and is currently approved for use in patients with nonsense
mutation DMD age 2 years and older at a dose of 40 mg kg™ daily. This
approval wasinitially based on promising findings from arandomized,
double-blind, placebo-controlled clinical trial (NCT00592553)%, and
was conditional onthe findings of asecond phase lll trial (NCT01826487,
ACT DMD)¥. Neither of these trials met their primary end point of a sta-
tistically significant improvement in 6 min walk distance (6MWD) by
more than30 mat week 48 post treatment (relative to placebo-treated
individuals). However, analysing a subset of the data revealed signifi-
cantimprovementsin patientsin theambulation transition phase (that
is, those with baseline 6MWD of 300-400 m)*’. Importantly, the FDA
declined to approve ataluren based on the same data®. Subsequent
studies have provided further evidence to support the efficacy of
ataluren. A meta-analysis in which data from these similar trials was
combined found that theimprovementin 6 MWD on ataluren did reach
statistical significance (for bothallintention-to-treat patients and the
ambulation transition patient subset)®’. Nevertheless, controversy
surrounding the approval of ataluren persists and several clinical tri-
als are ongoing (phase II, NCT04336826 and phase 11, NCT02369731,
NCTO01247207, NCT03179631). The mechanism of action for ataluren
is currently unknown, and it was shown that this drug could bind to
and stabilize firefly luciferase, leading to an increase in its activity
inreporter assays similar to those used to identify it as a stop codon
readthrough candidate®”. Others have reported conflicting results
using ataluren, such as a failure to show readthrough activity using
multiple reporter assays®. A convincing demonstration of dystrophin
restoration in ataluren-treated patient muscle biopsy samples and
elucidation of the drug mechanism of stop codon readthrough will
help to assuage these concerns.

Genereplacement therapy

Classical gene therapy for DMD aims to introduce DNA that encodes
afunctional dystrophin protein into patient muscles. Transgene DNA
is typically delivered using viral vectors, with AAV being the vector of
choice. Treatment with viral gene therapy usually results in ‘immuniza-
tion’ of the treated individual against the vector, meaning that repeat
administration of the therapy is precluded®. AAV is a single-stranded
DNA parvovirus that is generally considered to be non-pathogenicin
humans and hasbeen widely used for gene therapy applications, with
two AAV-based gene therapy products reaching marketing approval
for non-DMD indications. These products are intrathecal injection of
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a, Nonsense mutations that introduce premature stop codons in the DMD
mRNA result in premature termination of translation by the ribosome and a
failure to generate full-length, functional dystrophin protein. b, Treatment with
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ofarandom alternative amino acid at the premature termination codonsite.
Theribosome can therefore proceed through the premature stop codon and
expression of full-length dystrophin proteinis restored. ¢, Chemical structure
of gentamicin. d, Chemical structure of ataluren.

zolgensma for the treatment of spinal muscular atrophy (SMA) and
subretinalinjection of luxturnafor treating Leber congenital amaurosis.
Importantly, multiple AAV serotypes exhibit tropism for skeletal and
cardiac muscle®*”, However, the AAV genome has a maximum pack-
aging capacity of ~4.8 kb and so cannot deliver the full-length DMD
cDNAin asingle vector given that the major muscle isoform is ~14 kb.
Efforts have therefore focused on the generation of dystrophin mini-
genes in which non-essential internal domains are deleted, which are
inspired by the example of a very mildly affected patient who expressed
aninternally truncated but functional pseudo-dystrophin protein®
(Fig. 5). Expression of this minigene, with 46% of the normal dystro-
phin protein-coding region, prevented pathology in the mdx mouse,
and the deletion was further extended to generate micro-dystrophin
genes’®. As such, gene replacement therapies for DMD have focused
on the delivery of various micro-dystrophin transgenes (also named
‘mini-dystrophin’). Micro-dystrophins typically lack large portions
of the central rod domain — and therefore most of the spectrin-like
repeat domains are also missing — butinteractions between the DAPC
and the cytoskeleton are maintained, thereby preserving the primary
function of dystrophin. Most micro-dystrophin constructs lack the
C-terminal domain, the inclusion of which confers little additional
therapeutic benefit®. There are currently five micro-dystrophin drugs
inclinical trials, sponsored by Sarepta, Pfizer, Solid Biosciences, Gen-
ethon (in partnership with Sarepta) and REGENXBIO. These constructs
differ in terms of the micro-dystrophin structure, the choice of pro-
moter and the AAV serotype used (Table 2). AAV-mediated delivery of
micro-dystrophin canimprove dystrophic pathology in various mouse

and canine DMD models'°"'%, suggesting that micro-dystrophingenes

might be sufficient to convert the DMD phenotype into amilder Becker
clinical course.

SRP-9001 (rAAVrh74.MHCK7.micro-dystrophin, ELEVIDYS, delan-
distrogene moxeparvovec; Sarepta) is the AAV-micro-dystrophin gene
therapy that is at the most advanced stage and for which the most
information is publicly available. It uses a codon-optimized human
micro-dystrophin minigene driven by a synthetic MHCK7 promoter,
consisting of the muscle creatine kinase (MCK) promoter fused with
the MCK and a-myosin heavy chain complex (aMHC) enhancers to
promote high expression levels specifically in skeletal and cardiac
muscle'®. This transgene cassette is delivered using an AAV variant
derived from rhesus macaques (AAVrh74), which exhibits strong skel-
etal and cardiac muscle tropism'®, and for which seroprevalence of
neutralizing antibodies is low in patients with DMD'°, A phase I/lla
clinical trial (NCT03375164) in four patients with DMD treated with
2 x10" vector genomes (vg) kg™ of SRP-9001 reported expression of
dystrophin 12 weeks after injection and improved North Star Ambula-
tory Assessment (NSAA) scores and serum CK levels up to 1year after
treatment'”’. Three of these treated patients underwent further analysis
by quantitative MRI and spectroscopy, which illustrated an improve-
mentinmuscle fat fraction and transverse relaxation time (q7,, whichis
affected by inflammation and fatinfiltration) values for patients treated
with SRP-9001, compared with anatural history cohort'®, (Comparison
of experimental DMD therapies with natural history data has been
commonly employed when the use of a placebo group is precluded
by the relatively small number of available patients.) Multiple further
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clinical trials of SRP-9001 are ongoing (phase | open-label extension,
NCTO03375164; phase Il randomized placebo controlled, NCT03769116;
phase I, NCT04626674; and phase Il double-blind, randomized, pla-
cebo controlled, NCT05096221), withsome preliminary data available
through press releases and conference presentations' . On the
basis of the promising findings from across its clinical programmes,
Sareptasubmitted a Biologic Licence Application for SRP-9001 to the
FDA, which was granted Priority Review status'. InJune 2023, SR-9001
was granted conditional approval for use in boys aged 4-5 years with
DMD who do not have deletions in exon 8 and/or 9, making this the first
approved gene therapy product for DMD™,

Unfortunately, other micro-dystrophin gene therapy develop-
ment programmes have not runso smoothly. In December 2021, Pfizer
announced the death of a 16-year-old non-ambulatory trial partici-
pantwith advanced disease treated with a high dose (2 x 10" vg kg™) of
PF-06939926 in an open-label phase Ib trial (NCT03362502), leading
toatemporary FDA hold on the drug"*". Arandomized, double-blind,
placebo-controlled phase Ill trial of PF-06939926 (NCT04281485, CIF-
FREO)is ongoing. No peer reviewed findings from these studies are cur-
rently available, but claims of relatively high levels of micro-dystrophin
expression (24-50%, by anti-peptide antibody-enriched,immunoaffinity
liquid chromatography tandem mass spectrometry assay) and signifi-
cant functionalimprovementin the phase Ibtrial have been reported by
Pfizer"®. However, several treatment-related serious adverse events have
beenreported, related to muscle weakness and myocarditis, leadingtoa
protocolamendment to exclude patients with mutations that affect DMD
exons 9-13, or deletions thataffect both exons29 and 30, and toincludea
7-day hospitalization period after treatmentadministration™"®, A colla-
borative working group that combined the data and experience from
Pfizer, Sarepta, Solid Biosciences and Genethon, together with experts
from academia, was established to address the potential safety issues
with micro-dystrophin gene therapy™’. The observation that the worst
serious adverse events occurred only in patients who carried deletions
of dystrophin-encoding regions thatare presentin the micro-dystrophin
transgene protein, suggested thata T cell-mediated immuneresponse
is responsible' and provides a scientific rationale for excluding such
patients from clinical trials.

Similarly, a phase I/l trial (NCT03368742, IGNITE) of the
micro-dystrophin therapeutic SGT-001 (Solid Biosciences) has been
placed on hold by the FDA twice, as a consequence of serious adverse
events in a patient in the high-dose (2 x 10" vg kg™) cohort, includ-
ing thrombocytopenia, complement activation, reduced red blood
cell count, acute kidney injury and cardiopulmonary insufficiency'?°.
Clearance to continue was given after several protocol amendments,
includingimprovements to the AAV manufacturing process to remove
the majority of empty viral capsids. Prophylactic measures to minimize
immunereactions were alsoimplemented (treatment with eculizumab
and aClesteraseinhibitor), together withanincreasein corticosteroid
dose in the first month after SGT-001 injection'”. No peer reviewed
data on the safety and efficacy of SGT-001 are currently available,
but dystrophin levels of up to 17.5% (by western blot) of healthy levels
and improvements in 6MWD, NSAA score and pulmonary function
tests have been reported by Solid Biosciences'. An improved DMD
micro-dystrophingene therapy product (SGT-003) with better tropism
for muscle and heart and reduced liver delivery is being developed by
Solid Biosciences andis currently at the investigational new drug stage.

Notably, there have been several other deaths following treat-
ment with high-dose AAV in clinical trials for X-linked myotubular
myopathy (NCT03199469)'%, Sanfilippo syndrome (NCT03612869)'**

and in two patients treated with zolgensma (an FDA-approved gene
therapy for SMA)'*, High-dose AAV9 therapies (2 x 10" vg kg™) have
also been reported to induce severe hepatic and neurological toxici-
tiesinnonhuman primates and piglets'*. However, even higher doses
of AAV-micro-dystrophin gene therapies have been administered to
patients with DMD (SGT-001 at 2 x 10" vg kg™ and PF-06939926 at
3 x10™ vg kg™)"*1¥, suggesting that some patients are more susceptible
tosevere toxic effects than others. Itis clear that are-evaluation of the
safety of high-dose AAV therapiesis warranted.

Aside from safety issues associated with high-dose AAV, gene
replacement therapy for DMD faces several additional challenges.
Indeed, as many as -40% of humans are already positive for anti-AAV
antibodies as a consequence of natural exposure'”®, which creates a
key challenge for the application of AAV-derived vectors in patients
with DMD. The presence of these antibodies is typically an exclusion
criterioningene therapytrials. The expression of micro-dystrophinin
the muscle of patients with DMD has the potential to generate non-self
antigens, leading to an anti-transgeneimmune response. The relative
failure of the first clinical trial of AAV-micro-dystrophin was attributed
to such an anti-dystrophin T cell response'”. Evidence from preclini-
cal studies suggests that the anti-dystrophin antibody response can
be avoided by co-treating with immunomodulatory drugs such as
rituximab and VBP6 (ref. 130). The success of AAV-micro-dystrophin
therapy is predicated on long-term expression of the therapeutic
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Fig. 5| Micro-dystrophin gene replacement therapy. Micro-dystrophin
transgenes expressed in adeno-associated virus (AAV) genomes. The constructs
contain flanking inverted terminal repeat (ITR) regions, a muscle-specific
promoter (one of the four variants shown), the micro-dystrophin transgene and a
poly(A) transcription termination signal. Micro-dystrophin domain structures are
indicated for all the micro-dystrophin gene therapy products currently in clinical
development or FDA approved. ABD, actin binding domain; CR, cysteine-rich
domain; CT, C-terminal domain.
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Table 2 | Micro-dystrophin gene replacement therapies in clinical development

Name Company Micro-dystrophin AAV serotype Promoter Approval or clinical stage
SRP-9001 Sarepta Therapeutics AR4-23/ACT AAVrh74 MHCK7 FDA

PF-06939926 Pfizer AR3-19/20-21/ACT AAV9 hMSP Phase IlI

SGT-001 Solid Biosciences AR2-15/R18-22/ACT AAV9 CK8 Phase I/l

GNT 0004 Genethon-Sarepta ARA4-23/ACT AAV8 Spc5-12 Phase I/I1/1ll

RGX-202 REGENXBIO AR4-23 (Includes CT) AAV8 Spc5-12 Phase I/Il

AAV, adeno-associated virus.

transgene. AAV vector genomes do notintegrateinto the host DNA, but
are instead maintained as episomal chromatin with the potential for
long-term persistent transgene expression™"'*>, However, in practice,
AAV genomes are progressively lost from treated dystrophic muscle
so that micro-dystrophin expression would be expected to progres-
sively diminish, leading to a recurrence of dystrophic pathology'*.
Epigenetic silencing of the micro-dystrophin transgene cassette
mightalso contribute to aloss of expression over time™*. Intriguingly,
Mollard etal.”* recently reported areduction in AAV transgene expres-
sionin post-regeneration mouse muscle. Inthis study, muscle necrosis
and regeneration was induced by injection of cardiotoxin, and AAV1
particles were subsequently injected at time points when regenera-
tion was completed and muscle morphology restored (3 weeks and
42 weeks after injury). Transgene expression was reduced in these
animals relative to uninjured control animals, whereas there was no
difference in vector genome numbers or subcellular localization.
Asimilar effect was observed in mdx mouse muscle (which undergoes
asynchronous necrosis and regeneration), suggesting that dystrophic
pathology itself might be alimitationto the effectiveness of therapies
135

thatrequire AAV for delivery™.

Cell therapy

Cell therapies for DMD aim to treat the disease via the transplanta-
tion of dystrophin-expressing pro-myogenic cells into patient muscle.
Such therapies caninvolve cells derived from healthy, histocompatible
donors (allogenic) or via patient-derived cells that are genetically cor-
rected to express dystrophin ex vivo (autologous). Healthy cells are
administered either via intramuscular injection (which caninvolve
multipleinjections per muscle) or viasystemic administration. Inboth
cases, the transplanted cell population expands, undergoes myogenic
differentiation and fuses to generate new myotubes and/or integrate
with existing or regenerating myofibres. Initial results in the mdx mouse
demonstrated that implanted healthy neonatal muscle progenitor
cells (myoblasts) can fuse with pre-existing mdx myofibres and ren-
der them dystrophin positive****’. Subsequently, multiple other cell
sources have been explored for cell transplantation, including satellite
cells™®, bone marrow-derived myogenic cells', side population cells',
mesoangioblasts', pericytes'*?, CD133" cells'** and induced pluripotent
stem cells (iPSCs)™**. Despite promising results in preclinical studies,
resultsin human patients using these approaches have beenrelatively
disappointing. For example, patients with DMD treated with a series
of high-density injections of normal myoblast allotransplants (under
tacrolimus immunosuppression) exhibited dystrophin expression that
was mostly restricted to the area surrounding the injection sites and
ranged from the presence of a single dystrophin-positive myotube to
positivity in 26% of myofibres'*. In contrast, CD133" cells introduced
viaintramuscularinjection failed to fuse with the myofibresin muscle

from patients with DMD'*, Similarly, intra-arterial injection of mesoan-
gioblasts derived from HLA-matched healthy donors resulted in the
detection of dystrophin expression, but no functional improvement™',

Cell therapies for DMD face several important challenges™*®. In
many cases, obtaining sufficient numbers of cells to treat all muscles
is difficult, especially for cell types such as satellite cells. Transplanted
cells can face immune rejection, and typically large numbers of the
donor cells die shortly after injection'”. Delivery also constitutes a
major challenge, as cells can exhibit reduced potential for migration or
aggregateinside blood vessels following a failure to extravasate, which
can potentially lead to pulmonary embolism or accumulationin filter
organs'” Delivery to disease-critical muscles such as the diaphragm
is also particularly challenging.

A novel alternative cell therapy approach using cardiosphere-
derived cells (CDCs) has been pioneered by Capricor Therapeutics.
Allogenic CDCs derived from healthy donors have been administered
to patients with DMD via intracoronary® and intravenous'’ routes.
Although these have the potential to express wild-type dystrophin
protein, this is not the goal of the therapy per se. Instead, CDCs are
hypothesized to release extracellular vesicles containing cargo mol-
eculesthat exert anti-inflammatory and anti-fibrotic effects. Inarecent
double-blind, placebo-controlled, phase Il clinical trial (NCT03406780,
HOPE-2) patients with DMD were intravenously injected every 3 months
with 1.5 x 108 CDCs (CAP-1002) for a total of four administrations'’.
CAP-1002-treated patients exhibited a slowing of the loss of upper
limb function, together with improvements in cardiac structure and
function'’. An open-label extension study is ongoing (NCT04428476),
and a phaselll trial NCT05126758, HOPE-3) is currently recruiting.

ENCell is conducting a phase I clinical trial (NCT05338099) in
patients with DMD for its stem cell therapy ENOO1based on the transfer
of Wharton'’s jelly (umbilical cord)-derived mesenchymal stem cells.

Geneediting
With the repurposing of the CRISPR-Cas9 system for gene editing in
mammalian cells, there hasbeenintense interestin deploying this tech-
nology for the treatment of DMD™". In its simplest configuration, the
CRISPR-Cas9 system consists of the Cas9 endonuclease, whichinduces
double-strand DNA breaks (DSBs), and a single guide RNA (sgRNA)
that acts to programme the Cas9 such that it cuts at a specific DNA
sequence. Notably, the use of multiple guides enables the possibility of
multiplex gene editing™. The host cell DNA damage repair machinery
is of key importance for the success of CRISPR-Cas9 therapies, with the
non-homologous endjoining (NHEJ) pathway being the most relevant
for the purposes of this Review.

Multiple CRISPR-Cas9-based strategies have been proposed for
the treatment of DMD. The first demonstrations of CRISPR-Cas9-
mediated correction in the context of DMD used an exon excision
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approach™™* This strategy is conceptually similar to exon skipping,
whereby two DSBs areinduced inintronic sequences flanking a target
exon using a pair of sgRNAs and was initially demonstrated for Dmd
exon 23 in the mdx mouse. The resulting lesions are joined via the
NHEJ pathway and the intervening DNA removed. Such a corrected
locus would now be ‘permanently exon skipped’ as the preceding exon
(exon 22) will be spliced onto the following exon (exon 24).

Myofibresthat re-express dystrophin are believed to have aselec-
tion advantage, meaning that they are progressively enriched over
time™. Furthermore, early treatment in dystrophic mice is more effec-
tivethantreatment at the adult stage, possibly as the former approach
leadsto tolerization towards dystrophin-associated antigens. The edit-
ing of satellite cells is desirable, as the resulting corrected stem cells
will continue to add myonucleiwith the potential to express dystrophin
during growth and regeneration throughout the life of the treated
individual. However, there have been conflicting reports regarding the
potential of AAV vectors to transduce satellite cells">5¢ 15,

Excitingly, multiplex gene editing enables the simultaneous dele-
tion of multiple exons (analogous to multi-exon skipping described
above), with the potential for asingle therapy that could be applied to
alarge proportion of patients'**'*, An alternative approachis the single
cut strategy, in which the targeted introduction of an indel is used to
either disrupt a splicing motif, such as an exon splicing enhancer or
splice site, or reframe a transcript'™.

Vertex Pharmaceuticals and Sarepta are developing CRISPR-
Cas9-based therapies for DMD, although both are at the discovery or
preclinical phase. The most clinically advanced DMD CRISPR therapy is
CRD-TMH-001developed by anon-profit organization, Cure Rare Dis-
ease, in collaboration with the University of Massachusetts. Few details
arepublicly available about CRD-TMH-001 other thanitis designed to
activate dystrophin expression using a CRISPR activation (CRISPRa)
approach. CRISPRa uses a catalytically inactive Cas9 variant (dCas9)
fused to an effector domain (such as VP64) that promotes transcrip-
tional activation without the introduction of DNA DSBs™***", Ann=1
clinical trial (NCT05514249) with CRD-TMH-001 was initiated, but
Cure Rare Disease announced that the single 27-year-old trial par-
ticipant had died"®. Within 1 week of treatment the patient suffered
acuterespiratory distress and cardiac arrest, leading to death atday 8
after injection'®. Cure Rare Disease has multiple other personalized
CRISPR-based therapies in preclinical development'**.

Most CRISPR-Cas9 therapeutics for DMD rely on the use of AAV
vectorsfor delivery of the gene editing apparatus and, as such, are sub-
jecttoall of the limitations of these delivery vectors described above
(especially considering the high doses of vector that will be required).
Inaddition, there are multiple additional CRISPR-Cas9-specific limita-
tions that must be addressed before such strategies can be translated
into new therapies. First, deleterious off-target editing events must
be carefully considered. Non-productive on-target editing also has
the potential to corrupt myonuclei, leading to a patchy pattern of
dystrophin in treated myofibres'®. Pre-existing anti-Cas9 antibodies
and T cells are relatively common in the general population'*®°, which
may further limit the applicability of these therapies.

Multiple other CRISPR-based technologies are under investigation
for the treatment of DMD and are considered here briefly. A detailed
discussion of these approachesisbeyond the scope of thisarticle, but
hasbeen presented elsewhere'.

Precise gene editing can be achieved by leveraging the
homology-directed repair (HDR) DNA repair pathway. HDR-based
approachesrequire theintroduction of asingle DSB near to the target

edit site and the provision of a single-stranded oligodeoxynucleotide
(ssODN) repair template. Importantly, HDR is only active in cycling
cells, meaning that its in vivo utility in postmitotic tissues such as
muscleislimited. However, HDR-based approaches might be used for
ex vivo correction of cells from patients with DMD'®., Furthermore,
an HDR strategy was applied at the zygote stage to restore dystrophin
expression in the mdx mouse'”.

Base editing is a CRISPR strategy that can induce targeted single
nucleotide variants into target DNA”'2, Base editing typically uses a
‘nickase’ Cas9 (nCas9) enzyme, which is capable of cleaving only one
strand, fused to a base editing enzyme such as the adenosine base
editor, ABE, whichis derived from the Escherichia coli TadA protein'.
For the nCas9-ABE system, asingle-strand break (SSB) is generated on
one DNAsstrand, while the ABE effector module catalyses the transition
of an adenosine base to an inosine on the opposite strand. Inosine
either functions as aguanosine base or is converted into guanosine by
thebase excision repair pathway'”>. Base editing using the nCas9-ABE
system has been used to correct the nonsense mutation in the mdx
mouse'* and to achieve genomic DNA-level exon skipping via splice
site disruptionin dystrophic AEx51 mice'”. Base editing has the advan-
tage of minimizing the possibility of deleterious editing events such
as indel formation and chromosomal rearrangements as no DSBs are
formed. However, the nCas9-ABE system is large, and so strategies
such as split vector (trans-splicing AAV) approaches have been used
forinvivo delivery”*'”,

Prime editingis an alternative gene editing system that can directly
install specific editsincluding transitions, transversions, insertions and
deletionsinto target genomes"®. The prime editing system consists of
acatalytically impaired Cas9 (nCas9) endonuclease fused toareverse
transcriptase (RT) enzyme and a specialized prime editing guide RNA
(pegRNA) that directs the Cas9-RT fusion protein to the complemen-
tarytargetsite and also encodes theintended edit. Following nicking of
the target sequence by nCas9, the pegRNA binds to the exposed strand,
whichserves asaprimer for the RT reaction. New complementary DNA
specifying the desired edit encoded by the pegRNA is subsequently
generated, and the resultinglesionis resolved by ligation and mismatch
repair'”®. Prime editing has been used to achieve reframing of the dys-
trophin openreading frame iniPSCs'". Although prime editing enables
the installation of almost any desired edit, delivery of this system to
dystrophic muscle in vivo remains to be demonstrated.

Utrophin upregulation

Utrophin (UTRN) is an autosomal (6q24) paralogue of DMD that is
expressed during fetal development, at the neuromuscular and myo-
tendinous junctions, and during muscle regeneration””""7%, The 395 kDa
utrophinisoformisupregulated inthe muscles of dystrophin-deficient
mouse models (such as mdx and mdx52)'*" and in patients with
DMD™°, where it relocates to the sarcolemma and can bind to DAPC
components'®, These observations suggest that utrophin can substi-
tute for dystrophin to some extent, and that its upregulation in dys-
trophic muscle might be acompensatory and protective mechanism.
Accordingly, dystrophic pathology is severein the dystrophinand utro-
phin double knockout (dKO) mouse™*>'®, and genetic overexpression of
full-length utrophin by 3- to 4-fold on an mdx background was sufficient
to prevent the development of dystrophic pathological features's*1°,
Upregulation of utrophinisaparticularly attractive therapeutic strat-
egy as asingle approach could be used to treat all patients regardless
of mutation type. Furthermore, the UTRN gene is invariably unaffected
in patients with DMD, and its expression is ubiquitous'*®, meaning that
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patients are already tolerized to UTRN-associated antigens'’. Ubiqui-
tous overexpression of autrophin transgene in mice was also found to
be non-toxic™®.

The leading strategy for utrophin upregulation is the use of
small-molecule modulators. The drug ezutromid (SMT C1100; Summit
Therapeutics), a2-arylbenzoxazole, wasidentified in ascreen of small
molecules that promoted transcriptional activation of the utrophin
A promoter'®®, Daily oral administration of this compound improved
muscle pathology in the mdx mouse'. Investigation of ezutromid in
an open-label phase Il clinical trial (NCT02858362) showed evidence
ofutrophinupregulationand reduced muscle turnover after 24 weeks of
treatment™’, but this effect was not present at 48 weeks'”". Development
of ezutromid was discontinued on the basis of these disappointing
findings. Subsequentinvestigation revealed that ezutromid binds to,
and acts asan antagonist of, the aryl hydrocarbon receptor (AHR) and
that other AHR antagonists similarly promoted utrophin expression'”,
suggesting that this could be used for future drug development. It has
been proposed that the lack of sustained efficacy of ezutromid is a
consequence of its cellular metabolism leading to reduced drug
exposure™, and that such metabolism of future utrophin modulator
drugs could be avoided through medicinal chemistry optimization
(A. Russell, personal communication). Similarly, second-generation
utrophin upregulator compounds that are derivatives of ezutromid
with improved activity, such as SMT022357, have been reported™”.

Thesequence of utrophinis highly similar to that of dystrophin'”"%,
As such, internally truncated utrophin minigene variants have been
generated, analogous to the micro-dystrophin approach described
above'”*"**, To this end, transgenic micro-utrophin expressionresulted
inimprovements in histopathology and reduced serum CK levels in
mdx mice'” and various canine models'’. Similarly, AAV-delivered
micro-utrophin constructs improved muscle function and increased
lifespanin the severely affected dKO mouse'”.

Several other approaches have been explored for utrophin upregu-
lation in preclinical models including CRISPRa'®’, deletion of miRNA
target sitesinthe UTRN5’ UTR" and artificial transcription factors'”’.

Notably, there are important differences in the functionality of
utrophinand dystrophin, which suggest that utrophin might be insuf-
ficient to fully compensate for the absence of dystrophin. Specifically,
utrophin is not capable of anchoring nNOS at the sarcolemma'® nor
of rescuing the disordered pattern of the microtubule network that is
observed in dystrophic myofibres'®’. Furthermore, there is also evi-
dence that the functional benefit of utrophin minigenesis substantially
less than that of full-length dystrophin'®*.

Other therapeutic approaches

Amultitude of other disease-modifying approaches for DMD have been
investigated that target the various pathological features of DMD. These
include anti-inflammatory, vasodilating NO donor, modulation of Ca**
handling, anti-fibrotic, antioxidant and myostatin pathway blockade
strategies. A detailed discussion of these strategiesis beyond the scope
of this Review, and they have been reviewed elsewhere?**?° However,
two promising strategies are of note, given their interesting and distinct
mechanisms of action. Givinostat is a small-molecule histone dea-
cetylase inhibitor (HDACi) developed by Italfarmaco as an epigenetic
therapy for DMD. A recently completed randomized, double-blind,
placebo-controlled phaselll trial of givinostat (NCT02851797, EPIDYS)
reported slowed disease progressioninambulantboys with DMDin the
treatment arm. Eighteen months of givinostat treatment was reported
toresultinimproved performance (thatis, areduced decline) intimed

function tests, muscle strength analysis and fat infiltrationin the vastus
lateralis muscle as measured by magnetic resonance spectroscopy,
according to Italfarmaco®’*. HDAC activity is elevated in dystrophic
muscle as a consequence of impaired NO signalling®®, resulting in
widespread alterations in gene expression that contribute to DMD
pathology. Previously, givinostat-mediated HDAC inhibition was shown
toimprove muscle histopathology in the mdxmouse” and ina phase I/11
clinical trial (NCT01761292) in boys with DMD?%*.

Edgewise Therapeuticsis developing EDG-5506, an orally bioavail-
able, small-moleculeinhibitor of myosin that is specific to type Il (fast
twitch) fibresbut not active against type I (slow twitch) fibres. A phasell
clinical trial of EDG-5506 in patients with DMD (NCT05540860, LYNX)
is currently recruiting. Fast twitch myofibres are more susceptible to
contraction-induced damage in DMD?***°¢, and individuals with inac-
tivating variants in the MYH2 gene encoding fast myosin exhibit mild
proximal muscle weakness and typically lose ambulation®”. As such,
EDG-5506 is designed to protect dystrophic muscle by inhibiting the
contraction of fast twitch myofibres and thereby paradoxically reduc-
ing musclestrength. Edgewise is pursuing clinical trialsinboth patients
with DMD and those with BMD?%,

Combination therapy

Itis increasingly apparent that there will likely be no ‘one size fits all’
therapy for DMD. The diversity of DMD-causing genetic insults means
that a degree of personalization will be required to address specific
mutation types. In addition, dystrophin restoration alone might be
insufficient to correct the disease in patients with established pathol-
ogy.Forexample, the progressive decline inmuscle quality that results
from chronic inflammation and fibro/fatty degeneration means that
there might be relatively few fibres left in which to restore dystrophin
by thetime treatmentisadministered. Therefore, combination thera-
pies capable of simultaneously restoring dystrophin expression and
addressing the downstream molecular and cellular pathologies that
occur indystrophic muscle are desirable?”’. Notably, most novel DMD
treatments are technically combination therapies as most patients
are subject to chronic steroid regimens. However, there is a paucity
of preclinical studies on the combination of experimental therapies
with clinically relevant glucocorticoid cotreatment™°.

Although restoration of dystrophin protein expression by exon
skipping has now been reported in numerous preclinical studies,
achieving in human patients the kind of protein levels observed in
dystrophic animals constitutes a significant challenge. Combining
various dystrophin restoration strategies might lead to a synergi-
stic benefit. For example, the combination of ASO-mediated and
AAV-U7-snRNA-mediated exon skipping strategies led to reduced
AAV vector loss and prolonged dystrophin expression®'. AAV is a
single-stranded DNA virus, and so second strand synthesisis required
before atherapeutic transgene can be expressed. This resultsinatime
delay betweeninjection of the virus and therapeutic dystrophinrescue,
during which time the muscle turnover associated with dystrophic
pathology resultsin the loss of AAV vector genomes from treated mus-
cle,and therefore areductionin therapeutic efficacy'”. Pre-treatment
of mdxmice with ASOs (PPMO conjugates) resulted inatransient resto-
ration of high levels of dystrophinand concomitant stabilization of mus-
cleturnover, and then therapeutic AAV vectors were injected 2 weeks
later?. This pre-treatment strategy resulted in a tenfold increase in
dystrophin protein expression after 6 months, compared with mice
treated with AAV alone”"’. Importantly, PPMO pre-treatment also
enhanced AAV-mediated micro-dystrophin therapy*, meaning that
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this combination strategy is likely to be beneficial for enhancing any
therapy thatrelies on AAV transduction. It will be interesting to deter-
mine whether such an approach can be used to improve the efficacy
of CRISPR-Cas9-mediated dystrophinrecovery.

Conventional pharmacological means have also been used
to enhance the efficacy of exon skipping, including cotreatment
with so-called skipping enhancer drugs such as dantrolene®?and with
various HDAC inhibitors™>,

Similarly, the possibility of combining dystrophin re-expression
and utrophin upregulation has also been investigated in the mdx
mouse?*. Genetic overexpression of utrophin combined with PPMO
treatment resulted in a complete restoration of muscle function to
wild-type levels, which was not observed for either approachinisola-
tion, as measured by force drop measurements in isolated extensor
digitorum longus muscles”. Both dystrophin and utrophin can coex-
ist at the sarcolemma, suggesting that this approach could be used in
patients with DMD. However, very high levels of utrophin transgene
expression in a wild-type mouse resulted in a decrease in dystrophin
expression, suggesting that these two proteins compete for a finite
number of occupancy sites at the sarcolemma®*. On balance, this is
not likely to be an issue for therapy as such high levels of utrophin
are very unlikely to be achieved, and the two proteins co-localize
at the sarcolemma when expressed at levels that prevent pathology
inthe mouse.

Celltherapy has also been combined with AAV-micro-dystrophin
therapy in the dystrophic CXMD, dog model*”. Cotreatment of AAV
withbone marrow-derived mesenchymal stromal cells (MSCs) resulted
in an improvement in the dystrophic phenotype in the single dog
tested, which was attributed to the immunomodulatory properties
of the MSCs™".

Dystrophin restoration therapies might be augmented by com-
bining them with a microRNA (miRNA) inhibition strategy. miRNAs
are small RNA molecules that typically regulate gene expression by
binding to partially complementary mRNAs and repressing translation
and/orinducing target transcript degradation*°. For example, miR-31
is highly upregulated in dystrophic muscle'®?”*® and has a target
site in the 3’ untranslated region (UTR) of the dystrophin mRNA?”.
ThismiRNA-targetinteractionis notexpected to have any effectin the
dystrophic condition, as dystrophin proteinis not expressed. However,
when dystrophin expression is restored via exon skipping, the high
levels of miR-31 limit the degree of protein recovery®”. Inhibition of
miR-31 using expressed miRNA sponges or anti-miRNA oligonucleo-
tidesresulted inenhanced dystrophinrescue after exon skipping using
the U1snRNA systemin the mdx mouse®”. Similarly, miRNA regulation
of dystrophin expression was shown to account for differences in
dystrophin protein levels between patients with BMD with varying
levels of disease severity*?°, suggesting that miRNA inhibition might
be further exploited to maximize dystrophin rescue in a therapeutic
context. Notably, miRNAs that regulate utrophin expression have
also been identified*”, and masking of a site for the let-7c miRNA on
the utrophin 3’ UTR resulted in functional improvement in the mdx
mouse by inducing utrophin protein upregulation?”?, Another miRNA,
miR-29, was shown to suppress the expression of pro-fibrotic factorsin
dystrophic muscle, such that synthetic mimics of this miRNA could be
used for therapeutic purposes. However, the combination of such an
approachwithadystrophinrestoration therapy hasnotbeentested yet.

Many other approaches have combined dystrophin restoration
with strategies to improve muscle quality. For example, co-delivery
of two AAV vectors, one encoding micro-dystrophin and the other

encoding the muscle isoform of insulin-like growth factor 1 (IGF1),
resulted in synergistic benefits that were not observed for either vec-
torinisolation®”. Specifically, stabilization of myofibre turnover and
protection against contraction-induced injury (attributed to expres-
sion of micro-dystrophin) was accompanied by anincrease in muscle
mass and strength attributed to the IgfI transgene*”. The combination
of exon skipping and myostatin blockade (to increase muscle mass)
has also been explored in several studies****°. However, myostatin
blockade strategies have so far proved ineffective in DMD clinical trials,
whichislikely due to the already low circulating levels of myostatinin
patients with DMD?%.

Conclusions and perspectives

The geneticinsult that underlies DMD is relatively simple, and yet the
goal of restoring gene expression has proved to be a substantial
challenge. Although there are multiple drugs that have achieved mar-
keting authorization in various jurisdictions, these are applicable to
only small subsets of patients, and expert opinion on whether these
offer therapeutic benefit is mixed. It is clear that better therapies are
still needed. Improved ASO delivery technologies based on peptide,
antibody and Fab fragment ASO-bioconjugation strategies, together
with novel nucleicacid chemistries, have the potential to overcome the
low efficacy of naked PMO-based ASOs, although renal toxicity must
be considered carefully. By contrast, therapies based on gene replace-
ment, utrophin upregulation, and disease-modifying approachesarein
theory ‘mutation agnostic’ with widespread applicability. However, this
notion hasbeen challenged recently, as patients with certain mutation
types might be susceptible to anti-transgene T cell immune toxicity.
Furthermore, the high diversity of DMD-causing mutations means that
personalized medicine approaches will likely be needed to treat all
patients. Inmany cases, there may be insufficient patients to undertake
conventional clinical trials. Alternative approachesinclude the use of
Bayesian statistics to predict the pathological trajectory withinasingle
patient or clinical trials with one patient.

The success of dystrophin restoration therapies is likely to be
dependent on three key factors. First, the total amount of dystro-
phin restored. Evidence from preclinical models suggests that >15%
of wild-type levels are required for functional correction®®, and levels
>10-20% were associated with less severe pathology in patients with
BMD?*?*°_ Second, the quality of dystrophin produced. Therapies
such as exon skipping, micro-dystrophin gene therapy and CRISPR
exon deletion/skipping result in generation of internally truncated
pseudo-dystrophins that are expected to have reduced functionality
relative to full-length wild-type dystrophin. The degree of internal
truncation differs between therapeutic strategies and so should be
considered carefully. Third, the correct localization of dystrophin at
the sarcolemma. We have recently demonstrated the importance of
uniform sarcolemmal dystrophin for stabilizing turnover in dystrophic
muscle”. Thisisimportant because the various dystrophin restoration
strategies can lead to distinct patterns of sarcolemmal coverage'*>**,

Although it is often assumed that re-expression of functional
dystrophin proteinin the muscles of patients with DMD will correct the
disease, combination therapies might be required to both correct
theinitial genetic insult and address the myriad molecular pathologies
that occur in dystrophic muscle. This is especially important in the
case of patients with low overall muscle quality and as a consequence
of established pathologies and chronic disease. However, performing
clinicaltrials for combination therapiesis likely to be highly complex,
especially if the individual therapies to be combined are only minimally
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efficaciousinisolation. Itis therefore likely that such combinations will
necessarily consist of already-approved single therapies. Facilitating
such a therapy might require cooperation between pharmaceutical
companies with distinctintellectual property portfolios.

The recent approval of the micro-dystrophin gene therapy SRP-
9001 developed by Sareptais an enormous step forwards for the DMD
field and would follow onfrom the highly successful drug zolgensma for
the treatment of SMA. Whereas zolgensmais a life-changing treatment,
there has notbeen an equivalent breakthrough for DMD. Importantly,
early therapeutic intervention in SMA is much more effective than
treatment later in life**>. Whether such early intervention, before the
onset of pathology, would be beneficial inthe case of DMD is unknown.
Identifying applicable patients with DMD for early treatment and
trial participation would necessitate the implementation of newborn
screening programmes. Notably, there is delay in diagnosis of 2.2 years

for DMD, which has largely remained unchanged over the past three

decades®*.

Inconclusion, thereisaplethoraof molecular medicineapproaches
thatare under investigation, or approved for use, in patients with DMD.
However, there is still a need for improved therapies with higher effi-
cacyandthatare applicable toawider group of patients. In particular,
treatments that can correct cardiac pathology are needed for maximum
benefit to patients. Additionally, treatments that are effective for the
wholelifetime of a patient, or that can at least be repeat administered,
arealso desirable. Knowledge gained from current drug development
programmes, and especially from clinical data, will be crucial for the
ongoing development of therapies for DMD, but will also be highly
useful in the development of treatments for other diseases.

Published online: 31 August 2023
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